Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from redis/langcache-embed-v1 on the triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("waris-gill/langcache-embed-v2")
# Run inference
sentences = [
'What are some examples of crimes understood as a moral turpitude?',
'What are some examples of crimes of moral turpitude?',
'What are some examples of crimes understood as a legal aptitude?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor, positive, negative_1, negative_2, and negative_3| anchor | positive | negative_1 | negative_2 | negative_3 | |
|---|---|---|---|---|---|
| type | string | string | string | string | string |
| details |
|
|
|
|
|
| anchor | positive | negative_1 | negative_2 | negative_3 |
|---|---|---|---|---|
Is life really what I make of it? |
Life is what you make it? |
Is life hardly what I take of it? |
Life is not entirely what I make of it. |
Is life not what I make of it? |
When you visit a website, can a person running the website see your IP address? |
Does every website I visit knows my public ip address? |
When you avoid a website, can a person hiding the website see your MAC address? |
When you send an email, can the recipient see your physical location? |
When you visit a website, a person running the website cannot see your IP address. |
What are some cool features about iOS 10? |
What are the best new features of iOS 10? |
iOS 10 received criticism for its initial bugs and performance issues, and some users found the redesigned apps less intuitive compared to previous versions. |
What are the drawbacks of using Android 14? |
iOS 10 was widely criticized for its bugs, removal of beloved features, and generally being a downgrade from previous versions. |
MatryoshkaLoss with these parameters:{
"loss": "CachedMultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
anchor, positive, negative_1, negative_2, and negative_3| anchor | positive | negative_1 | negative_2 | negative_3 | |
|---|---|---|---|---|---|
| type | string | string | string | string | string |
| details |
|
|
|
|
|
| anchor | positive | negative_1 | negative_2 | negative_3 |
|---|---|---|---|---|
How do I make friends in office? |
How can I make friends in office? |
How do I lose friends in office? |
How do I lose enemies in office? |
I already have plenty of friends at work. |
Is it good to do MBA after Engineering? |
Is it necessary to do MBA after Engineering? |
Is learning to code essential for a successful marketing career? |
Not necessarily; an MBA isn't always the best next step after engineering – practical experience or specialized master's degrees can be more valuable depending on career goals. |
Is it bad to do MBA after Engineering? |
How I should fix my computer while it is showing no boot device found? |
How do I fix the "Boot device not found" problem? |
My computer is booting normally and does not have any issues with the boot device. |
I should not fix my computer while it is showing no boot device found. |
When will I break my phone while it is showing full boot device found? |
MatryoshkaLoss with these parameters:{
"loss": "CachedMultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: stepsper_device_train_batch_size: 2048per_device_eval_batch_size: 1024learning_rate: 1e-05num_train_epochs: 1lr_scheduler_type: constantwarmup_steps: 10gradient_checkpointing: Truetorch_compile: Truetorch_compile_backend: inductorbatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 2048per_device_eval_batch_size: 1024per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: constantlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 10log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Truetorch_compile_backend: inductortorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | triplet loss |
|---|---|---|---|
| 0.0556 | 1 | 6.4636 | - |
| 0.1111 | 2 | 6.1076 | - |
| 0.1667 | 3 | 5.8323 | - |
| 0.2222 | 4 | 5.6861 | - |
| 0.2778 | 5 | 5.5694 | - |
| 0.3333 | 6 | 5.2121 | - |
| 0.3889 | 7 | 5.0695 | - |
| 0.4444 | 8 | 4.81 | - |
| 0.5 | 9 | 4.6698 | - |
| 0.5556 | 10 | 4.3546 | 1.2224 |
| 0.6111 | 11 | 4.1922 | - |
| 0.6667 | 12 | 4.1434 | - |
| 0.7222 | 13 | 3.9918 | - |
| 0.7778 | 14 | 3.702 | - |
| 0.8333 | 15 | 3.6501 | - |
| 0.8889 | 16 | 3.6641 | - |
| 0.9444 | 17 | 3.3196 | - |
| 1.0 | 18 | 2.7108 | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Base model
answerdotai/ModernBERT-base