SentenceTransformer based on thenlper/gte-small
This is a sentence-transformers model finetuned from thenlper/gte-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-small
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("redis/model-a-baseline")
sentences = [
'Why do onions make people cry?',
'Why do onions sting?',
'Can people with bipolar have healthy relationships?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
| Metric |
NanoMSMARCO |
NanoNQ |
| cosine_accuracy@1 |
0.3 |
0.38 |
| cosine_accuracy@3 |
0.62 |
0.56 |
| cosine_accuracy@5 |
0.7 |
0.62 |
| cosine_accuracy@10 |
0.76 |
0.7 |
| cosine_precision@1 |
0.3 |
0.38 |
| cosine_precision@3 |
0.2067 |
0.1933 |
| cosine_precision@5 |
0.14 |
0.132 |
| cosine_precision@10 |
0.076 |
0.074 |
| cosine_recall@1 |
0.3 |
0.35 |
| cosine_recall@3 |
0.62 |
0.54 |
| cosine_recall@5 |
0.7 |
0.6 |
| cosine_recall@10 |
0.76 |
0.68 |
| cosine_ndcg@10 |
0.5416 |
0.5219 |
| cosine_mrr@10 |
0.4702 |
0.4853 |
| cosine_map@100 |
0.4817 |
0.4742 |
Nano BEIR
| Metric |
Value |
| cosine_accuracy@1 |
0.34 |
| cosine_accuracy@3 |
0.59 |
| cosine_accuracy@5 |
0.66 |
| cosine_accuracy@10 |
0.73 |
| cosine_precision@1 |
0.34 |
| cosine_precision@3 |
0.2 |
| cosine_precision@5 |
0.136 |
| cosine_precision@10 |
0.075 |
| cosine_recall@1 |
0.325 |
| cosine_recall@3 |
0.58 |
| cosine_recall@5 |
0.65 |
| cosine_recall@10 |
0.72 |
| cosine_ndcg@10 |
0.5318 |
| cosine_mrr@10 |
0.4778 |
| cosine_map@100 |
0.478 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
learning_rate: 2e-05
weight_decay: 0.0001
max_steps: 3000
warmup_ratio: 0.1
fp16: True
dataloader_drop_last: True
dataloader_num_workers: 1
dataloader_prefetch_factor: 1
load_best_model_at_end: True
optim: adamw_torch
ddp_find_unused_parameters: False
push_to_hub: True
hub_model_id: redis/model-a-baseline
eval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0001
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3.0
max_steps: 3000
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 1
dataloader_prefetch_factor: 1
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
project: huggingface
trackio_space_id: trackio
ddp_find_unused_parameters: False
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: redis/model-a-baseline
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: no
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: True
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: True
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
NanoMSMARCO_cosine_ndcg@10 |
NanoNQ_cosine_ndcg@10 |
NanoBEIR_mean_cosine_ndcg@10 |
| 0 |
0 |
- |
3.6614 |
0.6259 |
0.6583 |
0.6421 |
| 0.3556 |
250 |
2.1172 |
0.4652 |
0.5662 |
0.5558 |
0.5610 |
| 0.7112 |
500 |
0.5877 |
0.4272 |
0.5926 |
0.5289 |
0.5607 |
| 1.0669 |
750 |
0.5436 |
0.4134 |
0.5476 |
0.5478 |
0.5477 |
| 1.4225 |
1000 |
0.5214 |
0.4041 |
0.5461 |
0.5451 |
0.5456 |
| 1.7781 |
1250 |
0.5119 |
0.3994 |
0.5316 |
0.5377 |
0.5347 |
| 2.1337 |
1500 |
0.5006 |
0.3957 |
0.5357 |
0.5305 |
0.5331 |
| 2.4893 |
1750 |
0.494 |
0.3934 |
0.5444 |
0.5319 |
0.5382 |
| 2.8450 |
2000 |
0.4886 |
0.3906 |
0.5322 |
0.5246 |
0.5284 |
| 3.2006 |
2250 |
0.4839 |
0.3889 |
0.5413 |
0.5307 |
0.5360 |
| 3.5562 |
2500 |
0.4795 |
0.3881 |
0.5490 |
0.5214 |
0.5352 |
| 3.9118 |
2750 |
0.479 |
0.3872 |
0.5413 |
0.5219 |
0.5316 |
| 4.2674 |
3000 |
0.4765 |
0.3869 |
0.5416 |
0.5219 |
0.5318 |
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 2.21.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}