Datasets:
donor_blood_type
string | recipient_blood_type
string | compatible_for_rbc_transfusion
int64 | compatibility_level
string |
|---|---|---|---|
O+
|
O+
| 1
|
ideal
|
O+
|
O-
| 0
|
incompatible
|
O+
|
A+
| 1
|
acceptable
|
O+
|
A-
| 0
|
incompatible
|
O+
|
B+
| 1
|
acceptable
|
O+
|
B-
| 0
|
incompatible
|
O+
|
AB+
| 1
|
acceptable
|
O+
|
AB-
| 0
|
incompatible
|
O-
|
O+
| 1
|
acceptable
|
O-
|
O-
| 1
|
ideal
|
O-
|
A+
| 1
|
acceptable
|
O-
|
A-
| 1
|
acceptable
|
O-
|
B+
| 1
|
acceptable
|
O-
|
B-
| 1
|
acceptable
|
O-
|
AB+
| 1
|
acceptable
|
O-
|
AB-
| 1
|
acceptable
|
A+
|
O+
| 0
|
incompatible
|
A+
|
O-
| 0
|
incompatible
|
A+
|
A+
| 1
|
ideal
|
A+
|
A-
| 0
|
incompatible
|
A+
|
B+
| 0
|
incompatible
|
A+
|
B-
| 0
|
incompatible
|
A+
|
AB+
| 1
|
acceptable
|
A+
|
AB-
| 0
|
incompatible
|
A-
|
O+
| 0
|
incompatible
|
A-
|
O-
| 0
|
incompatible
|
A-
|
A+
| 1
|
acceptable
|
A-
|
A-
| 1
|
ideal
|
A-
|
B+
| 0
|
incompatible
|
A-
|
B-
| 0
|
incompatible
|
A-
|
AB+
| 1
|
acceptable
|
A-
|
AB-
| 1
|
acceptable
|
B+
|
O+
| 0
|
incompatible
|
B+
|
O-
| 0
|
incompatible
|
B+
|
A+
| 0
|
incompatible
|
B+
|
A-
| 0
|
incompatible
|
B+
|
B+
| 1
|
ideal
|
B+
|
B-
| 0
|
incompatible
|
B+
|
AB+
| 1
|
acceptable
|
B+
|
AB-
| 0
|
incompatible
|
B-
|
O+
| 0
|
incompatible
|
B-
|
O-
| 0
|
incompatible
|
B-
|
A+
| 0
|
incompatible
|
B-
|
A-
| 0
|
incompatible
|
B-
|
B+
| 1
|
acceptable
|
B-
|
B-
| 1
|
ideal
|
B-
|
AB+
| 1
|
acceptable
|
B-
|
AB-
| 1
|
acceptable
|
AB+
|
O+
| 0
|
incompatible
|
AB+
|
O-
| 0
|
incompatible
|
AB+
|
A+
| 0
|
incompatible
|
AB+
|
A-
| 0
|
incompatible
|
AB+
|
B+
| 0
|
incompatible
|
AB+
|
B-
| 0
|
incompatible
|
AB+
|
AB+
| 1
|
ideal
|
AB+
|
AB-
| 0
|
incompatible
|
AB-
|
O+
| 0
|
incompatible
|
AB-
|
O-
| 0
|
incompatible
|
AB-
|
A+
| 0
|
incompatible
|
AB-
|
A-
| 0
|
incompatible
|
AB-
|
B+
| 0
|
incompatible
|
AB-
|
B-
| 0
|
incompatible
|
AB-
|
AB+
| 1
|
acceptable
|
AB-
|
AB-
| 1
|
ideal
|
🩸 Blood Donation Registry — Synthetic Donors, Prevalence & Compatibility
A synthetic blood donation operations dataset for analysis and decision-focused modeling: eligibility/deferrals, donation history, rare blood types, country-level prevalence, and RBC transfusion compatibility (ABO/Rh).
✅ Synthetic data (safe for experimentation/teaching).
⚠️ Not clinical/medical ground truth and not intended for real-world medical decision-making.
Dataset summary
This dataset is designed to support portfolio-grade notebooks and practical workflows:
- exploratory analysis (EDA) and segmentation
- propensity / likelihood modeling and calibration
- threshold selection under capacity/budget constraints
- rare-blood availability analysis using prevalence + compatibility rules
Data files
1) blood_donation_registry_ml_ready.csv (30,000 rows × 27 columns)
Donor-level snapshot with a fixed reference date:
as_of_date = 2024-12-31
Key groups
- Identity & geography:
donor_id(unique),country_code,region - Profile:
age,sex(M/F),bmi,smoker(0/1),chronic_condition_flag(0/1) - Eligibility & deferrals:
eligibility_status,eligible_to_donate(0/1),deferral_reason - Donation behavior/history:
donation_count_last_12m,lifetime_donation_count,first_donation_year,years_since_first_donation,last_donation_date,recency_days,is_regular_donor(0/1),donor_age_at_first_donation,preferred_site - Blood context:
blood_type(8 types),is_rare_type(0/1),blood_type_country_prevalence - Engineered score (optional):
donation_propensity_score
Outcome columns
donated_next_6m(0/1)next_6m_donation_count(0–3)
2) blood_population_distribution.csv (39 rows × 12 columns)
Country-level population + blood type prevalence:
country_code,region,population_size- proportions:
p_o_pos,p_o_neg,p_a_pos,p_a_neg,p_b_pos,p_b_neg,p_ab_pos,p_ab_neg rh_negative_rate
Integrity note: blood type proportions sum to 1.0 per country.
3) blood_compatibility_lookup.csv (64 rows × 4 columns)
RBC transfusion compatibility matrix:
donor_blood_type,recipient_blood_typecompatible_for_rbc_transfusion(0/1)compatibility_level:ideal | acceptable | incompatible
4) data_dictionary.csv
Column-level documentation:
file,column_name,type,description,allowed_values_or_range,missing_values
Relationships (how tables connect)
blood_donation_registry_ml_ready.csv.country_code↔blood_population_distribution.csv.country_codeblood_donation_registry_ml_ready.csv.blood_type_country_prevalenceis derived from the matching country prevalence table.blood_compatibility_lookup.csvprovides rule-based compatibility for blood type pairs.
Recommended tasks
1) Donation likelihood (binary classification)
- Outcome:
donated_next_6m - Suggested evaluation:
ROC-AUC,PR-AUC,F1, plus calibration (reliability curve / Brier score)
2) Donation frequency (count prediction)
- Outcome:
next_6m_donation_count - Suggested evaluation:
MAE,RMSE(optional Poisson/Ordinal baselines)
3) Decision policy under constraints
Turn probabilities into an outreach policy:
- choose an operating threshold given capacity/budget
- compare FP/FN tradeoffs
- validate stability across segments (country/region, rare types, eligibility)
4) Rare blood operations analytics
- analyze
is_rare_typeby country prevalence - explore compatibility-aware matching using the lookup matrix
Modeling notes (avoid leakage / shortcuts)
This dataset intentionally includes engineered and overlapping fields for different notebook styles.
donated_next_6mis derived fromnext_6m_donation_count→ use one outcome as the target.eligible_to_donateoverlaps witheligibility_status→ keep one for simpler baselines.eligible_to_donate == 0impliesdonated_next_6m == 0→ for behavior modeling, consider restricting training toeligible_to_donate == 1.donation_propensity_scoreis an engineered signal; exclude it for “feature-only” benchmark baselines.
Data quality expectations
donor_idis unique (no duplicate donors)- no duplicate rows
- snapshot consistency (
as_of_datefixed) recency_daysaligns withas_of_date - last_donation_date- country codes match the prevalence table
- compatibility lookup covers all 8×8 donor/recipient pairs
Synthetic data generation (high-level)
Records are simulated to reflect realistic constraints and patterns:
- eligibility rules and deferral reasons (age/BMI/health flags)
- donation history distributions and recency behavior
- country-level blood type prevalence used to derive per-donor prevalence context
- ABO/Rh compatibility rules encoded in the lookup table
Synthetic distributions may not match any specific real-world population.
Limitations
- Snapshot-style dataset (not a full longitudinal event log beyond history fields)
- Synthetic distributions may differ from real operational settings
- Engineered signals (e.g.,
donation_propensity_score) can act as shortcut features if used without care
Quick start
import pandas as pd
donors = pd.read_csv("blood_donation_registry_ml_ready.csv")
pop = pd.read_csv("blood_population_distribution.csv")
compat = pd.read_csv("blood_compatibility_lookup.csv")
# Example join: add country population
donors = donors.merge(pop[["country_code", "population_size"]], on="country_code", how="left")
print(donors.shape)
License
CC BY 4.0 — attribution required.
Author
Tarek Masryo
- Downloads last month
- 18