On the Theoretical Limitations of Embedding-Based Retrieval
Paper
•
2508.21038
•
Published
•
20
This is a Asymmetric Inference-free SPLADE Sparse Encoder model finetuned from opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
SparseEncoder(
(0): Router(
(sub_modules): ModuleDict(
(query): Sequential(
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
)
(document): Sequential(
(0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'log1p_relu', 'word_embedding_dimension': 30522})
)
)
)
)
{
"NDCG": {
"NDCG@2": 0.90484,
"NDCG@10": 0.91822,
"NDCG@20": 0.9204,
"NDCG@100": 0.92605
},
"MAP": {
"MAP@2": 0.90125,
"MAP@10": 0.91146,
"MAP@20": 0.91216,
"MAP@100": 0.91316
},
"Recall": {
"Recall@2": 0.9045,
"Recall@10": 0.931,
"Recall@20": 0.938,
"Recall@100": 0.963
},
"Precision": {
"P@2": 0.9045,
"P@10": 0.1862,
"P@20": 0.0938,
"P@100": 0.01926
}
}
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("Frinkleko/opensearch-project_opensearch-neural-sparse-encoding-doc-v3-gte-limit-samples-1700")
# Run inference
queries = [
"Who likes Sonatas?",
]
documents = [
' Kamron Rose likes Landscaping, Spinning, Rugs, Model Building, Figure Skating, Extension Cords, Doctors, Sonatas, Owls.',
' Ege Kennedy likes Excitement, Tap Dancing, the Houston Astros, Agave Nectar, Cobras.',
' Codey Luna likes Bodyboarding, Keys, Tarantulas, Bonsai Trees, Balsamic Vinegar, Kale, Ticket to Ride, Ricotta, Tuning Forks, Silver, Sperm Whales, The Roaring Twenties, Manchego.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[16.2629, 6.6099, 5.9649]])
query and document| query | document | |
|---|---|---|
| type | string | string |
| details |
|
|
| query | document |
|---|---|
Who likes Sunflowers? |
Rasmus Logan likes Dark Chocolate, Documentary Series, Washing Machines, Softball, Sunflowers, Gregorian chants, Za'atar, Abacuses, Dolphins, Root Beer Floats, Cumin, Coconut Flour. |
Who likes Shaved Ice? |
Abdulkarem Boyer likes Stag Beetles, Acacia Trees, Olives, Landscape Photography, Neoclassicism, Guinea Pigs, Mentoring, Parsley, Chemistry, Vases, Shaved Ice. |
Who likes Rock Balancing? |
Tanay Melton likes Poetry Slams, Sperm Whales, Tonic Water, Bat Flowers, Rock Balancing. |
SpladeLoss with these parameters:{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
"document_regularizer_weight": 3e-05,
"query_regularizer_weight": 5e-05
}
per_device_train_batch_size: 85num_train_epochs: 4warmup_ratio: 0.1batch_sampler: no_duplicatesrouter_mapping: {'query': 'query', 'document': 'document'}overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 85per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {'query': 'query', 'document': 'document'}learning_rate_mapping: {}@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{weller2025theoreticallimit,
title={On the Theoretical Limitations of Embedding-Based Retrieval},
author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee},
year={2025},
eprint={2508.21038},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2508.21038},
}
@inproceedings{Shen_2025, series={SIGIR ’25},
title={Exploring $\ell_0$ parsification for Inference-free Sparse Retrievers},
url={http://dx.doi.org/10.1145/3726302.3730192},
DOI={10.1145/3726302.3730192},
booktitle={Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval},
publisher={ACM},
author={Shen, Xinjie and Geng, Zhichao and Yang, Yang},
year={2025},
month=jul, pages={2572–2576},
collection={SIGIR ’25}
}
@misc{geng2025competitivesearchrelevanceinferencefree,
title={Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers},
author={Zhichao Geng and Yiwen Wang and Dongyu Ru and Yang Yang},
year={2025},
eprint={2411.04403},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2411.04403},
}
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}