File size: 11,511 Bytes
9720139
 
9198f98
9720139
 
 
 
 
 
 
 
 
d107562
9720139
 
 
d107562
 
 
 
 
 
 
 
 
 
 
 
 
 
8701b68
 
 
 
 
 
 
 
d107562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9720139
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: audio-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/web-assets/model_demo.png)

# YamNet: Optimized for Qualcomm Devices

An audio event classifier trained on the AudioSet dataset to predict audio events from the AudioSet ontology employing the Mobilenet_v1 depthwise-separable convolution architecture.

This is based on the implementation of YamNet found [here](https://github.com/w-hc/torch_audioset).
This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/yamnet) library to export with custom configurations. More details on model performance across various devices, can be found [here](#performance-summary).

Qualcomm AI Hub Models uses [Qualcomm AI Hub Workbench](https://workbench.aihub.qualcomm.com) to compile, profile, and evaluate this model. [Sign up](https://myaccount.qualcomm.com/signup) to run these models on a hosted Qualcomm® device.

## Getting Started
There are two ways to deploy this model on your device:

### Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-onnx-float.zip)
| ONNX | w8a16 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-onnx-w8a16.zip)
| ONNX | w8a8 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-onnx-w8a8.zip)
| QNN_DLC | float | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-qnn_dlc-float.zip)
| QNN_DLC | w8a16 | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-qnn_dlc-w8a16.zip)
| QNN_DLC | w8a8 | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-qnn_dlc-w8a8.zip)
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-tflite-float.zip)
| TFLITE | w8a8 | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/releases/v0.46.0/yamnet-tflite-w8a8.zip)

For more device-specific assets and performance metrics, visit **[YamNet on Qualcomm® AI Hub](https://aihub.qualcomm.com/models/yamnet)**.


### Option 2: Export with Custom Configurations

Use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/yamnet) Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for [YamNet on GitHub](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/yamnet) for usage instructions.

## Model Details

**Model Type:** Model_use_case.audio_classification

**Model Stats:**
- Model checkpoint: yamnet.pth
- Input resolution: 1x1x96x64
- Number of parameters: 3.73M
- Model size (float): 14.2 MB

## Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit
|---|---|---|---|---|---|---
| YamNet | ONNX | float | Snapdragon® X Elite | 0.286 ms | 8 - 8 MB | NPU
| YamNet | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 0.33 ms | 0 - 109 MB | NPU
| YamNet | ONNX | float | Qualcomm® QCS8550 (Proxy) | 0.367 ms | 0 - 117 MB | NPU
| YamNet | ONNX | float | Qualcomm® QCS9075 | 0.487 ms | 0 - 3 MB | NPU
| YamNet | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.269 ms | 0 - 92 MB | NPU
| YamNet | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.26 ms | 0 - 92 MB | NPU
| YamNet | ONNX | w8a16 | Snapdragon® X Elite | 0.21 ms | 4 - 4 MB | NPU
| YamNet | ONNX | w8a16 | Snapdragon® 8 Gen 3 Mobile | 0.265 ms | 0 - 106 MB | NPU
| YamNet | ONNX | w8a16 | Qualcomm® QCS6490 | 11.068 ms | 9 - 14 MB | CPU
| YamNet | ONNX | w8a16 | Qualcomm® QCS8550 (Proxy) | 0.317 ms | 0 - 11 MB | NPU
| YamNet | ONNX | w8a16 | Qualcomm® QCS9075 | 0.394 ms | 0 - 3 MB | NPU
| YamNet | ONNX | w8a16 | Qualcomm® QCM6690 | 6.783 ms | 6 - 13 MB | CPU
| YamNet | ONNX | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 0.208 ms | 0 - 96 MB | NPU
| YamNet | ONNX | w8a16 | Snapdragon® 7 Gen 4 Mobile | 4.83 ms | 6 - 13 MB | CPU
| YamNet | ONNX | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 0.204 ms | 0 - 95 MB | NPU
| YamNet | ONNX | w8a8 | Snapdragon® X Elite | 0.22 ms | 4 - 4 MB | NPU
| YamNet | ONNX | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.255 ms | 0 - 105 MB | NPU
| YamNet | ONNX | w8a8 | Qualcomm® QCS6490 | 1.655 ms | 0 - 6 MB | CPU
| YamNet | ONNX | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.333 ms | 0 - 6 MB | NPU
| YamNet | ONNX | w8a8 | Qualcomm® QCS9075 | 0.393 ms | 0 - 3 MB | NPU
| YamNet | ONNX | w8a8 | Qualcomm® QCM6690 | 0.825 ms | 0 - 8 MB | CPU
| YamNet | ONNX | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.207 ms | 0 - 92 MB | NPU
| YamNet | ONNX | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.561 ms | 0 - 7 MB | CPU
| YamNet | ONNX | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.2 ms | 0 - 95 MB | NPU
| YamNet | QNN_DLC | float | Snapdragon® X Elite | 0.286 ms | 0 - 0 MB | NPU
| YamNet | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 0.181 ms | 0 - 38 MB | NPU
| YamNet | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 0.211 ms | 0 - 25 MB | NPU
| YamNet | QNN_DLC | float | Qualcomm® SA8775P | 0.36 ms | 0 - 23 MB | NPU
| YamNet | QNN_DLC | float | Qualcomm® QCS9075 | 0.259 ms | 0 - 2 MB | NPU
| YamNet | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 0.355 ms | 0 - 39 MB | NPU
| YamNet | QNN_DLC | float | Qualcomm® SA8295P | 0.556 ms | 0 - 20 MB | NPU
| YamNet | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.161 ms | 0 - 25 MB | NPU
| YamNet | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.15 ms | 0 - 24 MB | NPU
| YamNet | QNN_DLC | w8a16 | Snapdragon® X Elite | 0.214 ms | 0 - 0 MB | NPU
| YamNet | QNN_DLC | w8a16 | Snapdragon® 8 Gen 3 Mobile | 0.116 ms | 0 - 35 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® QCS6490 | 0.631 ms | 0 - 2 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® QCS8275 (Proxy) | 0.421 ms | 0 - 23 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® QCS8550 (Proxy) | 0.136 ms | 0 - 1 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® SA8775P | 0.268 ms | 0 - 25 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® QCS9075 | 0.184 ms | 0 - 2 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® QCM6690 | 0.502 ms | 0 - 22 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® QCS8450 (Proxy) | 0.214 ms | 0 - 36 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® SA7255P | 0.421 ms | 0 - 23 MB | NPU
| YamNet | QNN_DLC | w8a16 | Qualcomm® SA8295P | 0.428 ms | 0 - 21 MB | NPU
| YamNet | QNN_DLC | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 0.094 ms | 0 - 21 MB | NPU
| YamNet | QNN_DLC | w8a16 | Snapdragon® 7 Gen 4 Mobile | 0.171 ms | 0 - 22 MB | NPU
| YamNet | QNN_DLC | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 0.098 ms | 0 - 25 MB | NPU
| YamNet | QNN_DLC | w8a8 | Snapdragon® X Elite | 0.202 ms | 0 - 0 MB | NPU
| YamNet | QNN_DLC | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.11 ms | 0 - 35 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® QCS6490 | 0.624 ms | 0 - 2 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® QCS8275 (Proxy) | 0.392 ms | 0 - 24 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.131 ms | 0 - 1 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® SA8775P | 0.273 ms | 0 - 24 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® QCS9075 | 0.183 ms | 0 - 2 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® QCM6690 | 0.434 ms | 0 - 22 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.205 ms | 0 - 36 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® SA7255P | 0.392 ms | 0 - 24 MB | NPU
| YamNet | QNN_DLC | w8a8 | Qualcomm® SA8295P | 0.443 ms | 0 - 21 MB | NPU
| YamNet | QNN_DLC | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.094 ms | 0 - 25 MB | NPU
| YamNet | QNN_DLC | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.164 ms | 0 - 22 MB | NPU
| YamNet | QNN_DLC | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.089 ms | 0 - 25 MB | NPU
| YamNet | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 0.181 ms | 0 - 44 MB | NPU
| YamNet | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 1.962 ms | 0 - 20 MB | GPU
| YamNet | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 0.221 ms | 0 - 1 MB | NPU
| YamNet | TFLITE | float | Qualcomm® SA8775P | 0.368 ms | 0 - 31 MB | NPU
| YamNet | TFLITE | float | Qualcomm® QCS9075 | 0.261 ms | 0 - 10 MB | NPU
| YamNet | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 0.355 ms | 0 - 45 MB | NPU
| YamNet | TFLITE | float | Qualcomm® SA7255P | 1.962 ms | 0 - 20 MB | GPU
| YamNet | TFLITE | float | Qualcomm® SA8295P | 0.561 ms | 0 - 27 MB | NPU
| YamNet | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.159 ms | 0 - 32 MB | NPU
| YamNet | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.146 ms | 0 - 30 MB | NPU
| YamNet | TFLITE | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.109 ms | 0 - 35 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® QCS6490 | 0.51 ms | 0 - 6 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® QCS8275 (Proxy) | 0.418 ms | 0 - 23 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.131 ms | 0 - 7 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® SA8775P | 0.784 ms | 0 - 24 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® QCS9075 | 0.182 ms | 0 - 6 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® QCM6690 | 0.426 ms | 0 - 21 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.208 ms | 0 - 37 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® SA7255P | 0.418 ms | 0 - 23 MB | NPU
| YamNet | TFLITE | w8a8 | Qualcomm® SA8295P | 0.434 ms | 0 - 20 MB | NPU
| YamNet | TFLITE | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.101 ms | 0 - 26 MB | NPU
| YamNet | TFLITE | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.169 ms | 0 - 21 MB | NPU
| YamNet | TFLITE | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.095 ms | 0 - 24 MB | NPU

## License
* The license for the original implementation of YamNet can be found
  [here](https://github.com/w-hc/torch_audioset/blob/master/LICENSE).

## References
* [MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
* [Source Model Implementation](https://github.com/w-hc/torch_audioset)

## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).