--- library_name: pytorch license: other tags: - backbone - android pipeline_tag: automatic-speech-recognition --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/huggingface_wavlm_base_plus/web-assets/model_demo.png) # HuggingFace-WavLM-Base-Plus: Optimized for Mobile Deployment ## Real-time Speech processing HuggingFaceWavLMBasePlus is a real time speech processing backbone based on Microsoft's WavLM model. This model is an implementation of HuggingFace-WavLM-Base-Plus found [here](https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-base-plus/tree/main). This repository provides scripts to run HuggingFace-WavLM-Base-Plus on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/huggingface_wavlm_base_plus). ### Model Details - **Model Type:** Model_use_case.speech_recognition - **Model Stats:** - Model checkpoint: wavlm-libri-clean-100h-base-plus - Input resolution: 1x320000 - Number of parameters: 95.1M - Model size (float): 363 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | HuggingFace-WavLM-Base-Plus | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2847.928 ms | 125 - 908 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2452.462 ms | 125 - 1358 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1621.496 ms | 125 - 191 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 290.065 ms | 1 - 48 MB | NPU | [HuggingFace-WavLM-Base-Plus.onnx.zip](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.onnx.zip) | | HuggingFace-WavLM-Base-Plus | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2254.766 ms | 125 - 907 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2847.928 ms | 125 - 908 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1750.923 ms | 125 - 129 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1989.042 ms | 124 - 1052 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1576.959 ms | 125 - 130 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2254.766 ms | 125 - 907 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1458.456 ms | 114 - 1162 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 218.835 ms | 0 - 855 MB | NPU | [HuggingFace-WavLM-Base-Plus.onnx.zip](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.onnx.zip) | | HuggingFace-WavLM-Base-Plus | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1092.305 ms | 125 - 908 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 189.459 ms | 0 - 663 MB | NPU | [HuggingFace-WavLM-Base-Plus.onnx.zip](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.onnx.zip) | | HuggingFace-WavLM-Base-Plus | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 877.898 ms | 123 - 901 MB | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite) | | HuggingFace-WavLM-Base-Plus | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 155.058 ms | 0 - 729 MB | NPU | [HuggingFace-WavLM-Base-Plus.onnx.zip](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.onnx.zip) | | HuggingFace-WavLM-Base-Plus | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 295.23 ms | 202 - 202 MB | NPU | [HuggingFace-WavLM-Base-Plus.onnx.zip](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.onnx.zip) | ## Installation Install the package via pip: ```bash # NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported. pip install "qai-hub-models[huggingface-wavlm-base-plus]" ``` ## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.huggingface_wavlm_base_plus.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.huggingface_wavlm_base_plus.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.huggingface_wavlm_base_plus.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/huggingface_wavlm_base_plus/qai_hub_models/models/HuggingFace-WavLM-Base-Plus/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.huggingface_wavlm_base_plus import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S25") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.huggingface_wavlm_base_plus.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.huggingface_wavlm_base_plus.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on HuggingFace-WavLM-Base-Plus's performance across various devices [here](https://aihub.qualcomm.com/models/huggingface_wavlm_base_plus). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of HuggingFace-WavLM-Base-Plus can be found [here](https://github.com/microsoft/unilm/blob/master/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) * [Source Model Implementation](https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-base-plus/tree/main) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).