- TrustMark: Universal Watermarking for Arbitrary Resolution Images Imperceptible digital watermarking is important in copyright protection, misinformation prevention, and responsible generative AI. We propose TrustMark - a GAN-based watermarking method with novel design in architecture and spatio-spectra losses to balance the trade-off between watermarked image quality with the watermark recovery accuracy. Our model is trained with robustness in mind, withstanding various in- and out-place perturbations on the encoded image. Additionally, we introduce TrustMark-RM - a watermark remover method useful for re-watermarking. Our methods achieve state-of-art performance on 3 benchmarks comprising arbitrary resolution images. 3 authors · Nov 30, 2023
- IConMark: Robust Interpretable Concept-Based Watermark For AI Images With the rapid rise of generative AI and synthetic media, distinguishing AI-generated images from real ones has become crucial in safeguarding against misinformation and ensuring digital authenticity. Traditional watermarking techniques have shown vulnerabilities to adversarial attacks, undermining their effectiveness in the presence of attackers. We propose IConMark, a novel in-generation robust semantic watermarking method that embeds interpretable concepts into AI-generated images, as a first step toward interpretable watermarking. Unlike traditional methods, which rely on adding noise or perturbations to AI-generated images, IConMark incorporates meaningful semantic attributes, making it interpretable to humans and hence, resilient to adversarial manipulation. This method is not only robust against various image augmentations but also human-readable, enabling manual verification of watermarks. We demonstrate a detailed evaluation of IConMark's effectiveness, demonstrating its superiority in terms of detection accuracy and maintaining image quality. Moreover, IConMark can be combined with existing watermarking techniques to further enhance and complement its robustness. We introduce IConMark+SS and IConMark+TM, hybrid approaches combining IConMark with StegaStamp and TrustMark, respectively, to further bolster robustness against multiple types of image manipulations. Our base watermarking technique (IConMark) and its variants (+TM and +SS) achieve 10.8%, 14.5%, and 15.9% higher mean area under the receiver operating characteristic curve (AUROC) scores for watermark detection, respectively, compared to the best baseline on various datasets. 3 authors · Jul 17, 2025
- Diffusion-Based Image Editing for Breaking Robust Watermarks Robust invisible watermarking aims to embed hidden information into images such that the watermark can survive various image manipulations. However, the rise of powerful diffusion-based image generation and editing techniques poses a new threat to these watermarking schemes. In this paper, we present a theoretical study and method demonstrating that diffusion models can effectively break robust image watermarks that were designed to resist conventional perturbations. We show that a diffusion-driven ``image regeneration'' process can erase embedded watermarks while preserving perceptual image content. We further introduce a novel guided diffusion attack that explicitly targets the watermark signal during generation, significantly degrading watermark detectability. Theoretically, we prove that as an image undergoes sufficient diffusion-based transformation, the mutual information between the watermarked image and the embedded watermark payload vanishes, resulting in decoding failure. Experimentally, we evaluate our approach on multiple state-of-the-art watermarking schemes (including the deep learning-based methods StegaStamp, TrustMark, and VINE) and demonstrate near-zero watermark recovery rates after attack, while maintaining high visual fidelity of the regenerated images. Our findings highlight a fundamental vulnerability in current robust watermarking techniques against generative model-based attacks, underscoring the need for new watermarking strategies in the era of generative AI. 5 authors · Oct 7, 2025