new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering

We propose a method to allow precise and extremely fast mesh extraction from 3D Gaussian Splatting. Gaussian Splatting has recently become very popular as it yields realistic rendering while being significantly faster to train than NeRFs. It is however challenging to extract a mesh from the millions of tiny 3D gaussians as these gaussians tend to be unorganized after optimization and no method has been proposed so far. Our first key contribution is a regularization term that encourages the gaussians to align well with the surface of the scene. We then introduce a method that exploits this alignment to extract a mesh from the Gaussians using Poisson reconstruction, which is fast, scalable, and preserves details, in contrast to the Marching Cubes algorithm usually applied to extract meshes from Neural SDFs. Finally, we introduce an optional refinement strategy that binds gaussians to the surface of the mesh, and jointly optimizes these Gaussians and the mesh through Gaussian splatting rendering. This enables easy editing, sculpting, rigging, animating, compositing and relighting of the Gaussians using traditional softwares by manipulating the mesh instead of the gaussians themselves. Retrieving such an editable mesh for realistic rendering is done within minutes with our method, compared to hours with the state-of-the-art methods on neural SDFs, while providing a better rendering quality.

  • 2 authors
·
Nov 21, 2023 3

SugarcaneShuffleNet: A Very Fast, Lightweight Convolutional Neural Network for Diagnosis of 15 Sugarcane Leaf Diseases

Despite progress in AI-based plant diagnostics, sugarcane farmers in low-resource regions remain vulnerable to leaf diseases due to the lack of scalable, efficient, and interpretable tools. Many deep learning models fail to generalize under real-world conditions and require substantial computational resources, limiting their use in resource-constrained regions. In this paper, we present SugarcaneLD-BD, a curated dataset for sugarcane leaf-disease classification; SugarcaneShuffleNet, an optimized lightweight model for rapid on-device diagnosis; and SugarcaneAI, a Progressive Web Application for field deployment. SugarcaneLD-BD contains 638 curated images across five classes, including four major sugarcane diseases, collected in Bangladesh under diverse field conditions and verified by expert pathologists. To enhance diversity, we combined SugarcaneLD-BD with two additional datasets, yielding a larger and more representative corpus. Our optimized model, SugarcaneShuffleNet, offers the best trade-off between speed and accuracy for real-time, on-device diagnosis. This 9.26 MB model achieved 98.02% accuracy, an F1-score of 0.98, and an average inference time of 4.14 ms per image. For comparison, we fine-tuned five other lightweight convolutional neural networks: MnasNet, EdgeNeXt, EfficientNet-Lite, MobileNet, and SqueezeNet via transfer learning and Bayesian optimization. MnasNet and EdgeNeXt achieved comparable accuracy to SugarcaneShuffleNet, but required significantly more parameters, memory, and computation, limiting their suitability for low-resource deployment. We integrate SugarcaneShuffleNet into SugarcaneAI, delivering Grad-CAM-based explanations in the field. Together, these contributions offer a diverse benchmark, efficient models for low-resource environments, and a practical tool for sugarcane disease classification. It spans varied lighting, backgrounds and devices used on-farm

  • 8 authors
·
Aug 23, 2025

SUGARCREPE++ Dataset: Vision-Language Model Sensitivity to Semantic and Lexical Alterations

Despite their remarkable successes, state-of-the-art large language models (LLMs), including vision-and-language models (VLMs) and unimodal language models (ULMs), fail to understand precise semantics. For example, semantically equivalent sentences expressed using different lexical compositions elicit diverging representations. The degree of this divergence and its impact on encoded semantics is not very well understood. In this paper, we introduce the SUGARCREPE++ dataset to analyze the sensitivity of VLMs and ULMs to lexical and semantic alterations. Each sample in SUGARCREPE++ dataset consists of an image and a corresponding triplet of captions: a pair of semantically equivalent but lexically different positive captions and one hard negative caption. This poses a 3-way semantic (in)equivalence problem to the language models. We comprehensively evaluate VLMs and ULMs that differ in architecture, pre-training objectives and datasets to benchmark the performance of SUGARCREPE++ dataset. Experimental results highlight the difficulties of VLMs in distinguishing between lexical and semantic variations, particularly in object attributes and spatial relations. Although VLMs with larger pre-training datasets, model sizes, and multiple pre-training objectives achieve better performance on SUGARCREPE++, there is a significant opportunity for improvement. We show that all the models which achieve better performance on compositionality datasets need not perform equally well on SUGARCREPE++, signifying that compositionality alone may not be sufficient for understanding semantic and lexical alterations. Given the importance of the property that the SUGARCREPE++ dataset targets, it serves as a new challenge to the vision-and-language community.

  • 6 authors
·
Jun 16, 2024

Evaluating Sugarcane Yield Variability with UAV-Derived Cane Height under Different Water and Nitrogen Conditions

This study investigates the relationship between sugarcane yield and cane height derived under different water and nitrogen conditions from pre-harvest Digital Surface Model (DSM) obtained via Unmanned Aerial Vehicle (UAV) flights over a sugarcane test farm. The farm was divided into 62 blocks based on three water levels (low, medium, and high) and three nitrogen levels (low, medium, and high), with repeated treatments. In pixel distribution of DSM for each block, it provided bimodal distribution representing two peaks, ground level (gaps within canopies) and top of the canopies respectively. Using bimodal distribution, mean cane height was extracted for each block by applying a trimmed mean to the pixel distribution, focusing on the top canopy points. Similarly, the extracted mean elevation of the base was derived from the bottom points, representing ground level. The Derived Cane Height Model (DCHM) was generated by taking the difference between the mean canopy height and mean base elevation for each block. Yield measurements (tons/acre) were recorded post-harvest for each block. By aggregating the data into nine treatment zones (e.g., high water-low nitrogen, low water-high nitrogen), the DCHM and median yield were calculated for each zone. The regression analysis between the DCHM and corresponding yields for the different treatment zones yielded an R 2 of 0.95. This study demonstrates the significant impact of water and nitrogen treatments on sugarcane height and yield, utilizing one-time UAV-derived DSM data.

  • 5 authors
·
Oct 28, 2024