new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Paramanu: A Family of Novel Efficient Indic Generative Foundation Language Models

We present Gyan AI Paramanu ("atom"), a family of novel language models for Indian languages. It is a collection of auto-regressive monolingual, bilingual, and multilingual Indic language models pretrained from scratch on a single GPU for 10 Indian languages (Assamese, Bangla, Hindi, Konkani, Maithili, Marathi, Odia, Sanskrit, Tamil, Telugu) across 5 scripts (Bangla, Devanagari, Odia, Tamil, Telugu) of varying sizes ranging from 13.29M to 367.5M.The models are pretrained with a context size of 1024 on a single GPU. The models are very efficient, small, fast, and powerful. We have also developed an efficient most advanced Indic tokenizer that can even tokenize unseen languages. In order to avoid the "curse of multi-linguality" in our multilingual mParamanu model, we pretrained on comparable corpora by typological grouping using the same script. We performed human evaluation of our pretrained models for open end text generation on grammar, coherence, creativity, and factuality metrics for Bangla, Hindi, and Sanskrit. Our Bangla, Hindi, and Sanskrit models outperformed GPT-3.5-Turbo (ChatGPT), Bloom 7B, LLaMa-2 7B, OPT 6.7B, GPT-J 6B, GPTNeo 1.3B, GPT2-XL large language models (LLMs) by a large margin despite being smaller in size by 66 to 20 times compared to standard 7B LLMs. To run inference on our pretrained models, CPU is enough, and GPU is not needed. We also instruction-tuned our pretrained Bangla, Hindi, Marathi, Tamil, and Telugu models on 23k instructions in respective languages. Our pretrained and instruction-tuned models which are first of its kind, most powerful efficient small generative language models ever developed for Indic languages, and the various results lead to the conclusion that high quality generative language models are possible without high amount of compute power and humongous number of parameters. We plan to release our models at https://www.bharatgpts.com.

  • 2 authors
·
Jan 31, 2024 2

LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models

The success of large language models (LLMs), like GPT-3 and ChatGPT, has led to the development of numerous cost-effective and accessible alternatives that are created by fine-tuning open-access LLMs with task-specific data (e.g., ChatDoctor) or instruction data (e.g., Alpaca). Among the various fine-tuning methods, adapter-based parameter-efficient fine-tuning (PEFT) is undoubtedly one of the most attractive topics, as it only requires fine-tuning a few external parameters instead of the entire LLMs while achieving comparable or even better performance. To enable further research on PEFT methods of LLMs, this paper presents LLM-Adapters, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks. The framework includes state-of-the-art open-access LLMs such as LLaMA, BLOOM, OPT, and GPT-J, as well as widely used adapters such as Series adapter, Parallel adapter, and LoRA. The framework is designed to be research-friendly, efficient, modular, and extendable, allowing the integration of new adapters and the evaluation of them with new and larger-scale LLMs. Furthermore, to evaluate the effectiveness of adapters in LLMs-Adapters, we conduct experiments on six math reasoning datasets. The results demonstrate that using adapter-based PEFT in smaller-scale LLMs (7B) with few extra trainable parameters yields comparable, and in some cases superior, performance to that of powerful LLMs (175B) in zero-shot inference on simple math reasoning datasets. Overall, we provide a promising framework for fine-tuning large LLMs on downstream tasks. We believe the proposed LLMs-Adapters will advance adapter-based PEFT research, facilitate the deployment of research pipelines, and enable practical applications to real-world systems.

  • 9 authors
·
Apr 4, 2023

Small Language Models for Efficient Agentic Tool Calling: Outperforming Large Models with Targeted Fine-tuning

As organizations scale adoption of generative AI, model cost optimization and operational efficiency have emerged as critical factors determining sustainability and accessibility. While Large Language Models (LLMs) demonstrate impressive capabilities across diverse tasks, their extensive computational requirements make them cost-prohibitive for routine enterprise use. This limitation motivates the exploration of Small Language Models (SLMs), which can deliver comparable performance in targeted applications while drastically reducing infrastructure overhead (Irugalbandara et al., 2023). In this work, we investigate the feasibility of replacing LLM-driven workflows with optimized SLMs. We trained a domain-adapted SLM to execute representative tasks traditionally handled by LLMs, such as document summarization, query answering, and structured data interpretation. As part of the experiment, we investigated the fine-tuning of facebook/opt-350m model (single epoch only) using the Hugging Face TRL (Transformer Reinforcement Learning), specifically the Supervised Fine-Tuning (SFT) trainer. The OPT-350M model was released by Meta AI in 2022 as part of the OPT (Open Pretrained Transformer) family of models. Similar studies demonstrate that even models at the 350M parameter scale can meaningfully contribute to instruction-tuning pipelines (Mekala et al., 2024). Experimental results demonstrated that our fine-tuned SLM achieves exceptional performance with a 77.55\% pass rate on ToolBench evaluation, significantly outperforming all baseline models including ChatGPT-CoT (26.00\%), ToolLLaMA-DFS (30.18\%), and ToolLLaMA-CoT (16.27\%). These findings emphasize that thoughtful design and targeted training of SLMs can significantly lower barriers to adoption, enabling cost-effective, large-scale integration of generative AI into production systems.

  • 4 authors
·
Dec 17, 2025