new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

REAP: A Large-Scale Realistic Adversarial Patch Benchmark

Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.

  • 4 authors
·
Dec 11, 2022

Mapillary Vistas Validation for Fine-Grained Traffic Signs: A Benchmark Revealing Vision-Language Model Limitations

Obtaining high-quality fine-grained annotations for traffic signs is critical for accurate and safe decision-making in autonomous driving. Widely used datasets, such as Mapillary, often provide only coarse-grained labels - without distinguishing semantically important types such as stop signs or speed limit signs. To this end, we present a new validation set for traffic signs derived from the Mapillary dataset called Mapillary Vistas Validation for Traffic Signs (MVV), where we decompose composite traffic signs into granular, semantically meaningful categories. The dataset includes pixel-level instance masks and has been manually annotated by expert annotators to ensure label fidelity. Further, we benchmark several state-of-the-art VLMs against the self-supervised DINOv2 model on this dataset and show that DINOv2 consistently outperforms all VLM baselines-not only on traffic sign recognition, but also on heavily represented categories like vehicles and humans. Our analysis reveals significant limitations in current vision-language models for fine-grained visual understanding and establishes DINOv2 as a strong baseline for dense semantic matching in autonomous driving scenarios. This dataset and evaluation framework pave the way for more reliable, interpretable, and scalable perception systems. Code and data are available at: https://github.com/nec-labs-ma/relabeling

  • 2 authors
·
Aug 4, 2025 1

CARLA2Real: a tool for reducing the sim2real gap in CARLA simulator

Simulators are indispensable for research in autonomous systems such as self-driving cars, autonomous robots and drones. Despite significant progress in various simulation aspects, such as graphical realism, an evident gap persists between the virtual and real-world environments. Since the ultimate goal is to deploy the autonomous systems in the real world, closing the sim2real gap is of utmost importance. In this paper, we employ a state-of-the-art approach to enhance the photorealism of simulated data, aligning them with the visual characteristics of real-world datasets. Based on this, we developed CARLA2Real, an easy-to-use, publicly available tool (plug-in) for the widely used and open-source CARLA simulator. This tool enhances the output of CARLA in near real-time, achieving a frame rate of 13 FPS, translating it to the visual style and realism of real-world datasets such as Cityscapes, KITTI, and Mapillary Vistas. By employing the proposed tool, we generated synthetic datasets from both the simulator and the enhancement model outputs, including their corresponding ground truth annotations for tasks related to autonomous driving. Then, we performed a number of experiments to evaluate the impact of the proposed approach on feature extraction and semantic segmentation methods when trained on the enhanced synthetic data. The results demonstrate that the sim2real gap is significant and can indeed be reduced by the introduced approach.

  • 2 authors
·
Oct 23, 2024

MMS-VPR: Multimodal Street-Level Visual Place Recognition Dataset and Benchmark

Existing visual place recognition (VPR) datasets predominantly rely on vehicle-mounted imagery, lack multimodal diversity and underrepresent dense, mixed-use street-level spaces, especially in non-Western urban contexts. To address these gaps, we introduce MMS-VPR, a large-scale multimodal dataset for street-level place recognition in complex, pedestrian-only environments. The dataset comprises 78,575 annotated images and 2,512 video clips captured across 207 locations in a ~70,800 m^2 open-air commercial district in Chengdu, China. Each image is labeled with precise GPS coordinates, timestamp, and textual metadata, and covers varied lighting conditions, viewpoints, and timeframes. MMS-VPR follows a systematic and replicable data collection protocol with minimal device requirements, lowering the barrier for scalable dataset creation. Importantly, the dataset forms an inherent spatial graph with 125 edges, 81 nodes, and 1 subgraph, enabling structure-aware place recognition. We further define two application-specific subsets -- Dataset_Edges and Dataset_Points -- to support fine-grained and graph-based evaluation tasks. Extensive benchmarks using conventional VPR models, graph neural networks, and multimodal baselines show substantial improvements when leveraging multimodal and structural cues. MMS-VPR facilitates future research at the intersection of computer vision, geospatial understanding, and multimodal reasoning. The dataset is publicly available at https://huggingface.co/datasets/Yiwei-Ou/MMS-VPR.

  • 7 authors
·
May 18, 2025

MODEST: Multi-Optics Depth-of-Field Stereo Dataset

Reliable depth estimation under real optical conditions remains a core challenge for camera vision in systems such as autonomous robotics and augmented reality. Despite recent progress in depth estimation and depth-of-field rendering, research remains constrained by the lack of large-scale, high-fidelity, real stereo DSLR datasets, limiting real-world generalization and evaluation of models trained on synthetic data as shown extensively in literature. We present the first high-resolution (5472times3648px) stereo DSLR dataset with 18000 images, systematically varying focal length and aperture across complex real scenes and capturing the optical realism and complexity of professional camera systems. For 9 scenes with varying scene complexity, lighting and background, images are captured with two identical camera assemblies at 10 focal lengths (28-70mm) and 5 apertures (f/2.8-f/22), spanning 50 optical configurations in 2000 images per scene. This full-range optics coverage enables controlled analysis of geometric and optical effects for monocular and stereo depth estimation, shallow depth-of-field rendering, deblurring, 3D scene reconstruction and novel view synthesis. Each focal configuration has a dedicated calibration image set, supporting evaluation of classical and learning based methods for intrinsic and extrinsic calibration. The dataset features challenging visual elements such as multi-scale optical illusions, reflective surfaces, mirrors, transparent glass walls, fine-grained details, and natural / artificial ambient light variations. This work attempts to bridge the realism gap between synthetic training data and real camera optics, and demonstrates challenges with the current state-of-the-art monocular, stereo depth and depth-of-field methods. We release the dataset, calibration files, and evaluation code to support reproducible research on real-world optical generalization.

  • 5 authors
·
Nov 25, 2025

Are We Hungry for 3D LiDAR Data for Semantic Segmentation? A Survey and Experimental Study

3D semantic segmentation is a fundamental task for robotic and autonomous driving applications. Recent works have been focused on using deep learning techniques, whereas developing fine-annotated 3D LiDAR datasets is extremely labor intensive and requires professional skills. The performance limitation caused by insufficient datasets is called data hunger problem. This research provides a comprehensive survey and experimental study on the question: are we hungry for 3D LiDAR data for semantic segmentation? The studies are conducted at three levels. First, a broad review to the main 3D LiDAR datasets is conducted, followed by a statistical analysis on three representative datasets to gain an in-depth view on the datasets' size and diversity, which are the critical factors in learning deep models. Second, a systematic review to the state-of-the-art 3D semantic segmentation is conducted, followed by experiments and cross examinations of three representative deep learning methods to find out how the size and diversity of the datasets affect deep models' performance. Finally, a systematic survey to the existing efforts to solve the data hunger problem is conducted on both methodological and dataset's viewpoints, followed by an insightful discussion of remaining problems and open questions To the best of our knowledge, this is the first work to analyze the data hunger problem for 3D semantic segmentation using deep learning techniques that are addressed in the literature review, statistical analysis, and cross-dataset and cross-algorithm experiments. We share findings and discussions, which may lead to potential topics in future works.

  • 5 authors
·
Jun 7, 2020

The Audio-Visual BatVision Dataset for Research on Sight and Sound

Vision research showed remarkable success in understanding our world, propelled by datasets of images and videos. Sensor data from radar, LiDAR and cameras supports research in robotics and autonomous driving for at least a decade. However, while visual sensors may fail in some conditions, sound has recently shown potential to complement sensor data. Simulated room impulse responses (RIR) in 3D apartment-models became a benchmark dataset for the community, fostering a range of audiovisual research. In simulation, depth is predictable from sound, by learning bat-like perception with a neural network. Concurrently, the same was achieved in reality by using RGB-D images and echoes of chirping sounds. Biomimicking bat perception is an exciting new direction but needs dedicated datasets to explore the potential. Therefore, we collected the BatVision dataset to provide large-scale echoes in complex real-world scenes to the community. We equipped a robot with a speaker to emit chirps and a binaural microphone to record their echoes. Synchronized RGB-D images from the same perspective provide visual labels of traversed spaces. We sampled modern US office spaces to historic French university grounds, indoor and outdoor with large architectural variety. This dataset will allow research on robot echolocation, general audio-visual tasks and sound ph{\ae}nomena unavailable in simulated data. We show promising results for audio-only depth prediction and show how state-of-the-art work developed for simulated data can also succeed on our dataset. Project page: https://amandinebtto.github.io/Batvision-Dataset/

  • 4 authors
·
Mar 13, 2023

Map It Anywhere (MIA): Empowering Bird's Eye View Mapping using Large-scale Public Data

Top-down Bird's Eye View (BEV) maps are a popular representation for ground robot navigation due to their richness and flexibility for downstream tasks. While recent methods have shown promise for predicting BEV maps from First-Person View (FPV) images, their generalizability is limited to small regions captured by current autonomous vehicle-based datasets. In this context, we show that a more scalable approach towards generalizable map prediction can be enabled by using two large-scale crowd-sourced mapping platforms, Mapillary for FPV images and OpenStreetMap for BEV semantic maps. We introduce Map It Anywhere (MIA), a data engine that enables seamless curation and modeling of labeled map prediction data from existing open-source map platforms. Using our MIA data engine, we display the ease of automatically collecting a dataset of 1.2 million pairs of FPV images & BEV maps encompassing diverse geographies, landscapes, environmental factors, camera models & capture scenarios. We further train a simple camera model-agnostic model on this data for BEV map prediction. Extensive evaluations using established benchmarks and our dataset show that the data curated by MIA enables effective pretraining for generalizable BEV map prediction, with zero-shot performance far exceeding baselines trained on existing datasets by 35%. Our analysis highlights the promise of using large-scale public maps for developing & testing generalizable BEV perception, paving the way for more robust autonomous navigation.

  • 10 authors
·
Jul 11, 2024 4

OpenFACADES: An Open Framework for Architectural Caption and Attribute Data Enrichment via Street View Imagery

Building properties, such as height, usage, and material composition, play a crucial role in spatial data infrastructures, supporting applications such as energy simulation, risk assessment, and environmental modeling. Despite their importance, comprehensive and high-quality building attribute data remain scarce in many urban areas. Recent advances have enabled the extraction and tagging of objective building attributes using remote sensing and street-level imagery. However, establishing a method and pipeline that integrates diverse open datasets, acquires holistic building imagery at scale, and infers comprehensive building attributes remains a significant challenge. Among the first, this study bridges the gaps by introducing OpenFACADES, an open framework that leverages multimodal crowdsourced data to enrich building profiles with both objective attributes and semantic descriptors through multimodal large language models. Our methodology proceeds in three major steps. First, we integrate street-level image metadata from Mapillary with OpenStreetMap geometries via isovist analysis, effectively identifying images that provide suitable vantage points for observing target buildings. Second, we automate the detection of building facades in panoramic imagery and tailor a reprojection approach to convert objects into holistic perspective views that approximate real-world observation. Third, we introduce an innovative approach that harnesses and systematically investigates the capabilities of open-source large vision-language models (VLMs) for multi-attribute prediction and open-vocabulary captioning in building-level analytics, leveraging a globally sourced dataset of 30,180 labeled images from seven cities. Evaluation shows that fine-tuned VLM excel in multi-attribute inference, outperforming single-attribute computer vision models and zero-shot ChatGPT-4o.

  • 5 authors
·
Apr 1, 2025

RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis

We present a large-scale synthetic dataset for novel view synthesis consisting of ~300k images rendered from nearly 2000 complex scenes using high-quality ray tracing at high resolution (1600 x 1600 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis, thus providing a large unified benchmark for both training and evaluation. Using 4 distinct sources of high-quality 3D meshes, the scenes of our dataset exhibit challenging variations in camera views, lighting, shape, materials, and textures. Because our dataset is too large for existing methods to process, we propose Sparse Voxel Light Field (SVLF), an efficient voxel-based light field approach for novel view synthesis that achieves comparable performance to NeRF on synthetic data, while being an order of magnitude faster to train and two orders of magnitude faster to render. SVLF achieves this speed by relying on a sparse voxel octree, careful voxel sampling (requiring only a handful of queries per ray), and reduced network structure; as well as ground truth depth maps at training time. Our dataset is generated by NViSII, a Python-based ray tracing renderer, which is designed to be simple for non-experts to use and share, flexible and powerful through its use of scripting, and able to create high-quality and physically-based rendered images. Experiments with a subset of our dataset allow us to compare standard methods like NeRF and mip-NeRF for single-scene modeling, and pixelNeRF for category-level modeling, pointing toward the need for future improvements in this area.

  • 12 authors
·
May 14, 2022

OCTA-500: A Retinal Dataset for Optical Coherence Tomography Angiography Study

Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age / gender / eye / disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an ~10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.

  • 10 authors
·
Dec 14, 2020

SkyScript: A Large and Semantically Diverse Vision-Language Dataset for Remote Sensing

Remote sensing imagery, despite its broad applications in helping achieve Sustainable Development Goals and tackle climate change, has not yet benefited from the recent advancements of versatile, task-agnostic vision language models (VLMs). A key reason is that the large-scale, semantically diverse image-text dataset required for developing VLMs is still absent for remote sensing images. Unlike natural images, remote sensing images and their associated text descriptions cannot be efficiently collected from the public Internet at scale. In this work, we bridge this gap by using geo-coordinates to automatically connect open, unlabeled remote sensing images with rich semantics covered in OpenStreetMap, and thus construct SkyScript, a comprehensive vision-language dataset for remote sensing images, comprising 2.6 million image-text pairs covering 29K distinct semantic tags. With continual pre-training on this dataset, we obtain a VLM that surpasses baseline models with a 6.2% average accuracy gain in zero-shot scene classification across seven benchmark datasets. It also demonstrates the ability of zero-shot transfer for fine-grained object attribute classification and cross-modal retrieval. We hope this dataset can support the advancement of VLMs for various multi-modal tasks in remote sensing, such as open-vocabulary classification, retrieval, captioning, and text-to-image synthesis.

  • 5 authors
·
Dec 20, 2023

BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature

The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset.Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally.On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.

  • 16 authors
·
Jan 13, 2025 3

RAVIR: A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance Imaging

The retinal vasculature provides important clues in the diagnosis and monitoring of systemic diseases including hypertension and diabetes. The microvascular system is of primary involvement in such conditions, and the retina is the only anatomical site where the microvasculature can be directly observed. The objective assessment of retinal vessels has long been considered a surrogate biomarker for systemic vascular diseases, and with recent advancements in retinal imaging and computer vision technologies, this topic has become the subject of renewed attention. In this paper, we present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging. It enables the creation of deep learning-based models that distinguish extracted vessel type without extensive post-processing. We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins and the quantitative measurement of the widths of segmented vessels. Our extensive experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models. Additionally, we propose a knowledge distillation framework for the domain adaptation of RAVIR pretrained networks on color images. We demonstrate that our pretraining procedure yields new state-of-the-art benchmarks on the DRIVE, STARE, and CHASE_DB1 datasets. Dataset link: https://ravirdataset.github.io/data/

  • 8 authors
·
Mar 28, 2022

StreetSurfaceVis: a dataset of crowdsourced street-level imagery with semi-automated annotations of road surface type and quality

Road unevenness significantly impacts the safety and comfort of various traffic participants, especially vulnerable road users such as cyclists and wheelchair users. This paper introduces StreetSurfaceVis, a novel dataset comprising 9,122 street-level images collected from a crowdsourcing platform and manually annotated by road surface type and quality. The dataset is intended to train models for comprehensive surface assessments of road networks. Existing open datasets are constrained by limited geospatial coverage and camera setups, typically excluding cycleways and footways. By crafting a heterogeneous dataset, we aim to fill this gap and enable robust models that maintain high accuracy across diverse image sources. However, the frequency distribution of road surface types and qualities is highly imbalanced. We address the challenge of ensuring sufficient images per class while reducing manual annotation by proposing a sampling strategy that incorporates various external label prediction resources. More precisely, we estimate the impact of (1) enriching the image data with OpenStreetMap tags, (2) iterative training and application of a custom surface type classification model, (3) amplifying underrepresented classes through prompt-based classification with GPT-4o or similarity search using image embeddings. We show that utilizing a combination of these strategies effectively reduces manual annotation workload while ensuring sufficient class representation.

  • 4 authors
·
Jul 31, 2024

GAIA: A Global, Multi-modal, Multi-scale Vision-Language Dataset for Remote Sensing Image Analysis

The continuous operation of Earth-orbiting satellites generates vast and ever-growing archives of Remote Sensing (RS) images. Natural language presents an intuitive interface for accessing, querying, and interpreting the data from such archives. However, existing Vision-Language Models (VLMs) are predominantly trained on web-scraped, noisy image-text data, exhibiting limited exposure to the specialized domain of RS. This deficiency results in poor performance on RS-specific tasks, as commonly used datasets often lack detailed, scientifically accurate textual descriptions and instead emphasize solely on attributes like date and location. To bridge this critical gap, we introduce GAIA, a novel dataset designed for multi-scale, multi-sensor, and multi-modal RS image analysis. GAIA comprises of 205,150 meticulously curated RS image-text pairs, representing a diverse range of RS modalities associated to different spatial resolutions. Unlike existing vision-language datasets in RS, GAIA specifically focuses on capturing a diverse range of RS applications, providing unique information about environmental changes, natural disasters, and various other dynamic phenomena. The dataset provides a spatially and temporally balanced distribution, spanning across the globe, covering the last 25 years with a balanced temporal distribution of observations. GAIA's construction involved a two-stage process: (1) targeted web-scraping of images and accompanying text from reputable RS-related sources, and (2) generation of five high-quality, scientifically grounded synthetic captions for each image using carefully crafted prompts that leverage the advanced vision-language capabilities of GPT-4o. Our extensive experiments, including fine-tuning of CLIP and BLIP2 models, demonstrate that GAIA significantly improves performance on RS image classification, cross-modal retrieval and image captioning tasks.

  • 5 authors
·
Feb 13, 2025

UAV-VisLoc: A Large-scale Dataset for UAV Visual Localization

The application of unmanned aerial vehicles (UAV) has been widely extended recently. It is crucial to ensure accurate latitude and longitude coordinates for UAVs, especially when the global navigation satellite systems (GNSS) are disrupted and unreliable. Existing visual localization methods achieve autonomous visual localization without error accumulation by matching the ground-down view image of UAV with the ortho satellite maps. However, collecting UAV ground-down view images across diverse locations is costly, leading to a scarcity of large-scale datasets for real-world scenarios. Existing datasets for UAV visual localization are often limited to small geographic areas or are focused only on urban regions with distinct textures. To address this, we define the UAV visual localization task by determining the UAV's real position coordinates on a large-scale satellite map based on the captured ground-down view. In this paper, we present a large-scale dataset, UAV-VisLoc, to facilitate the UAV visual localization task. This dataset comprises images from diverse drones across 11 locations in China, capturing a range of topographical features. The dataset features images from fixed-wing drones and multi-terrain drones, captured at different altitudes and orientations. Our dataset includes 6,742 drone images and 11 satellite maps, with metadata such as latitude, longitude, altitude, and capture date. Our dataset is tailored to support both the training and testing of models by providing a diverse and extensive data.

  • 7 authors
·
May 20, 2024

Geometry-Aware Learning of Maps for Camera Localization

Maps are a key component in image-based camera localization and visual SLAM systems: they are used to establish geometric constraints between images, correct drift in relative pose estimation, and relocalize cameras after lost tracking. The exact definitions of maps, however, are often application-specific and hand-crafted for different scenarios (e.g. 3D landmarks, lines, planes, bags of visual words). We propose to represent maps as a deep neural net called MapNet, which enables learning a data-driven map representation. Unlike prior work on learning maps, MapNet exploits cheap and ubiquitous sensory inputs like visual odometry and GPS in addition to images and fuses them together for camera localization. Geometric constraints expressed by these inputs, which have traditionally been used in bundle adjustment or pose-graph optimization, are formulated as loss terms in MapNet training and also used during inference. In addition to directly improving localization accuracy, this allows us to update the MapNet (i.e., maps) in a self-supervised manner using additional unlabeled video sequences from the scene. We also propose a novel parameterization for camera rotation which is better suited for deep-learning based camera pose regression. Experimental results on both the indoor 7-Scenes dataset and the outdoor Oxford RobotCar dataset show significant performance improvement over prior work. The MapNet project webpage is https://goo.gl/mRB3Au.

  • 5 authors
·
Dec 9, 2017

V2X-Radar: A Multi-modal Dataset with 4D Radar for Cooperative Perception

Modern autonomous vehicle perception systems often struggle with occlusions and limited perception range. Previous studies have demonstrated the effectiveness of cooperative perception in extending the perception range and overcoming occlusions, thereby enhancing the safety of autonomous driving. In recent years, a series of cooperative perception datasets have emerged; however, these datasets primarily focus on cameras and LiDAR, neglecting 4D Radar, a sensor used in single-vehicle autonomous driving to provide robust perception in adverse weather conditions. In this paper, to bridge the gap created by the absence of 4D Radar datasets in cooperative perception, we present V2X-Radar, the first large-scale, real-world multi-modal dataset featuring 4D Radar. V2X-Radar dataset is collected using a connected vehicle platform and an intelligent roadside unit equipped with 4D Radar, LiDAR, and multi-view cameras. The collected data encompasses sunny and rainy weather conditions, spanning daytime, dusk, and nighttime, as well as various typical challenging scenarios. The dataset consists of 20K LiDAR frames, 40K camera images, and 20K 4D Radar data, including 350K annotated boxes across five categories. To support various research domains, we have established V2X-Radar-C for cooperative perception, V2X-Radar-I for roadside perception, and V2X-Radar-V for single-vehicle perception. Furthermore, we provide comprehensive benchmarks across these three sub-datasets. We will release all datasets and benchmark codebase at http://openmpd.com/column/V2X-Radar and https://github.com/yanglei18/V2X-Radar.

  • 13 authors
·
Nov 16, 2024 1

REFUGE2 Challenge: A Treasure Trove for Multi-Dimension Analysis and Evaluation in Glaucoma Screening

With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets of CFPs in the ophthalmology community, large-scale datasets for screening only have labels of disease categories, and datasets with annotations of fundus structures are usually small in size. In addition, labeling standards are not uniform across datasets, and there is no clear information on the acquisition device. Here we release a multi-annotation, multi-quality, and multi-device color fundus image dataset for glaucoma analysis on an original challenge -- Retinal Fundus Glaucoma Challenge 2nd Edition (REFUGE2). The REFUGE2 dataset contains 2000 color fundus images with annotations of glaucoma classification, optic disc/cup segmentation, as well as fovea localization. Meanwhile, the REFUGE2 challenge sets three sub-tasks of automatic glaucoma diagnosis and fundus structure analysis and provides an online evaluation framework. Based on the characteristics of multi-device and multi-quality data, some methods with strong generalizations are provided in the challenge to make the predictions more robust. This shows that REFUGE2 brings attention to the characteristics of real-world multi-domain data, bridging the gap between scientific research and clinical application.

  • 28 authors
·
Feb 17, 2022

ChatEarthNet: A Global-Scale Image-Text Dataset Empowering Vision-Language Geo-Foundation Models

An in-depth comprehension of global land cover is essential in Earth observation, forming the foundation for a multitude of applications. Although remote sensing technology has advanced rapidly, leading to a proliferation of satellite imagery, the inherent complexity of these images often makes them difficult for non-expert users to understand. Natural language, as a carrier of human knowledge, can be a bridge between common users and complicated satellite imagery. In this context, we introduce a global-scale, high-quality image-text dataset for remote sensing, providing natural language descriptions for Sentinel-2 data to facilitate the understanding of satellite imagery for common users. Specifically, we utilize Sentinel-2 data for its global coverage as the foundational image source, employing semantic segmentation labels from the European Space Agency's (ESA) WorldCover project to enrich the descriptions of land covers. By conducting in-depth semantic analysis, we formulate detailed prompts to elicit rich descriptions from ChatGPT. To enhance the dataset's quality, we introduce the manual verification process. This step involves manual inspection and correction to refine the dataset, thus significantly improving its accuracy and quality. Finally, we offer the community ChatEarthNet, a large-scale image-text dataset characterized by global coverage, high quality, wide-ranging diversity, and detailed descriptions. ChatEarthNet consists of 163,488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10,000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training vision-language geo-foundation models and evaluating large vision-language models for remote sensing. The dataset will be made publicly available.

  • 4 authors
·
Feb 17, 2024

VISION2UI: A Real-World Dataset with Layout for Code Generation from UI Designs

Automatically generating UI code from webpage design visions can significantly alleviate the burden of developers, enabling beginner developers or designers to directly generate Web pages from design diagrams. Currently, prior research has accomplished the objective of generating UI code from rudimentary design visions or sketches through designing deep neural networks. Inspired by the groundbreaking advancements achieved by Multimodal Large Language Models (MLLMs), the automatic generation of UI code from high-fidelity design images is now emerging as a viable possibility. Nevertheless, our investigation reveals that existing MLLMs are hampered by the scarcity of authentic, high-quality, and large-scale datasets, leading to unsatisfactory performance in automated UI code generation. To mitigate this gap, we present a novel dataset, termed VISION2UI, extracted from real-world scenarios, augmented with comprehensive layout information, tailored specifically for finetuning MLLMs in UI code generation. Specifically, this dataset is derived through a series of operations, encompassing collecting, cleaning, and filtering of the open-source Common Crawl dataset. In order to uphold its quality, a neural scorer trained on labeled samples is utilized to refine the data, retaining higher-quality instances. Ultimately, this process yields a dataset comprising 2,000 (Much more is coming soon) parallel samples encompassing design visions and UI code. The dataset is available at https://huggingface.co/datasets/xcodemind/vision2ui.

  • 9 authors
·
Apr 9, 2024

ROVER: A Multi-Season Dataset for Visual SLAM

Robust SLAM is a crucial enabler for autonomous navigation in natural, semi-structured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGBD cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGBD configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, semi-structured environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.

  • 7 authors
·
Dec 3, 2024

OLIVES Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics

Clinical diagnosis of the eye is performed over multifarious data modalities including scalar clinical labels, vectorized biomarkers, two-dimensional fundus images, and three-dimensional Optical Coherence Tomography (OCT) scans. Clinical practitioners use all available data modalities for diagnosing and treating eye diseases like Diabetic Retinopathy (DR) or Diabetic Macular Edema (DME). Enabling usage of machine learning algorithms within the ophthalmic medical domain requires research into the relationships and interactions between all relevant data over a treatment period. Existing datasets are limited in that they neither provide data nor consider the explicit relationship modeling between the data modalities. In this paper, we introduce the Ophthalmic Labels for Investigating Visual Eye Semantics (OLIVES) dataset that addresses the above limitation. This is the first OCT and near-IR fundus dataset that includes clinical labels, biomarker labels, disease labels, and time-series patient treatment information from associated clinical trials. The dataset consists of 1268 near-IR fundus images each with at least 49 OCT scans, and 16 biomarkers, along with 4 clinical labels and a disease diagnosis of DR or DME. In total, there are 96 eyes' data averaged over a period of at least two years with each eye treated for an average of 66 weeks and 7 injections. We benchmark the utility of OLIVES dataset for ophthalmic data as well as provide benchmarks and concrete research directions for core and emerging machine learning paradigms within medical image analysis.

  • 6 authors
·
Sep 22, 2022

A multi-view contrastive learning framework for spatial embeddings in risk modelling

Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.

  • 3 authors
·
Nov 22, 2025

SMapper: A Multi-Modal Data Acquisition Platform for SLAM Benchmarking

Advancing research in fields like Simultaneous Localization and Mapping (SLAM) and autonomous navigation critically depends on reliable and reproducible multimodal datasets. While several influential datasets have driven progress in these domains, they often suffer from limitations in sensing modalities, environmental diversity, and the reproducibility of the underlying hardware setups. To address these challenges, this paper introduces SMapper, a novel open-hardware, multi-sensor platform designed explicitly for, though not limited to, SLAM research. The device integrates synchronized LiDAR, multi-camera, and inertial sensing, supported by a robust calibration and synchronization pipeline that ensures precise spatio-temporal alignment across modalities. Its open and replicable design allows researchers to extend its capabilities and reproduce experiments across both handheld and robot-mounted scenarios. To demonstrate its practicality, we additionally release SMapper-light, a publicly available SLAM dataset containing representative indoor and outdoor sequences. The dataset includes tightly synchronized multimodal data and ground-truth trajectories derived from offline LiDAR-based SLAM with sub-centimeter accuracy, alongside dense 3D reconstructions. Furthermore, the paper contains benchmarking results on state-of-the-art LiDAR and visual SLAM frameworks using the SMapper-light dataset. By combining open-hardware design, reproducible data collection, and comprehensive benchmarking, SMapper establishes a robust foundation for advancing SLAM algorithm development, evaluation, and reproducibility.

  • 6 authors
·
Sep 11, 2025

ROVR-Open-Dataset: A Large-Scale Depth Dataset for Autonomous Driving

Depth estimation is a fundamental task for 3D scene understanding in autonomous driving, robotics, and augmented reality. Existing depth datasets, such as KITTI, nuScenes, and DDAD, have advanced the field but suffer from limitations in diversity and scalability. As benchmark performance on these datasets approaches saturation, there is an increasing need for a new generation of large-scale, diverse, and cost-efficient datasets to support the era of foundation models and multi-modal learning. We present ROVR, a large-scale, diverse, and cost-efficient depth dataset designed to capture the complexity of real-world driving. ROVR comprises 200K high-resolution frames across highway, rural, and urban scenarios, spanning day/night and adverse weather conditions. A lightweight acquisition pipeline ensures scalable collection, while sparse but statistically sufficient ground truth supports robust training. Benchmarking with state-of-the-art monocular depth models reveals severe cross-dataset generalization failures: models achieving near-ceiling accuracy on KITTI degrade drastically on ROVR, and even when trained on ROVR, current methods fall short of saturation. These results highlight the unique challenges posed by ROVR-scene diversity, dynamic environments, and sparse ground truth, establishing it as a demanding new platform for advancing depth estimation and building models with stronger real-world robustness. Extensive ablation studies provide a more intuitive understanding of our dataset across different scenarios, lighting conditions, and generalized ability.

  • 14 authors
·
Aug 19, 2025

Adver-City: Open-Source Multi-Modal Dataset for Collaborative Perception Under Adverse Weather Conditions

Adverse weather conditions pose a significant challenge to the widespread adoption of Autonomous Vehicles (AVs) by impacting sensors like LiDARs and cameras. Even though Collaborative Perception (CP) improves AV perception in difficult conditions, existing CP datasets lack adverse weather conditions. To address this, we introduce Adver-City, the first open-source synthetic CP dataset focused on adverse weather conditions. Simulated in CARLA with OpenCDA, it contains over 24 thousand frames, over 890 thousand annotations, and 110 unique scenarios across six different weather conditions: clear weather, soft rain, heavy rain, fog, foggy heavy rain and, for the first time in a synthetic CP dataset, glare. It has six object categories including pedestrians and cyclists, and uses data from vehicles and roadside units featuring LiDARs, RGB and semantic segmentation cameras, GNSS, and IMUs. Its scenarios, based on real crash reports, depict the most relevant road configurations for adverse weather and poor visibility conditions, varying in object density, with both dense and sparse scenes, allowing for novel testing conditions of CP models. Benchmarks run on the dataset show that weather conditions created challenging conditions for perception models, with CoBEVT scoring 58.30/52.44/38.90 (AP@30/50/70). The dataset, code and documentation are available at https://labs.cs.queensu.ca/quarrg/datasets/adver-city/.

  • 2 authors
·
Oct 8, 2024

SpaceVista: All-Scale Visual Spatial Reasoning from mm to km

With the current surge in spatial reasoning explorations, researchers have made significant progress in understanding indoor scenes, but still struggle with diverse applications such as robotics and autonomous driving. This paper aims to advance all-scale spatial reasoning across diverse scenarios by tackling two key challenges: 1) the heavy reliance on indoor 3D scans and labor-intensive manual annotations for dataset curation; 2) the absence of effective all-scale scene modeling, which often leads to overfitting to individual scenes. In this paper, we introduce a holistic solution that integrates a structured spatial reasoning knowledge system, scale-aware modeling, and a progressive training paradigm, as the first attempt to broaden the all-scale spatial intelligence of MLLMs to the best of our knowledge. Using a task-specific, specialist-driven automated pipeline, we curate over 38K video scenes across 5 spatial scales to create SpaceVista-1M, a dataset comprising approximately 1M spatial QA pairs spanning 19 diverse task types. While specialist models can inject useful domain knowledge, they are not reliable for evaluation. We then build an all-scale benchmark with precise annotations by manually recording, retrieving, and assembling video-based data. However, naive training with SpaceVista-1M often yields suboptimal results due to the potential knowledge conflict. Accordingly, we introduce SpaceVista-7B, a spatial reasoning model that accepts dense inputs beyond semantics and uses scale as an anchor for scale-aware experts and progressive rewards. Finally, extensive evaluations across 5 benchmarks, including our SpaceVista-Bench, demonstrate competitive performance, showcasing strong generalization across all scales and scenarios. Our dataset, model, and benchmark will be released on https://peiwensun2000.github.io/mm2km .

  • 11 authors
·
Oct 10, 2025 3

MCTED: A Machine-Learning-Ready Dataset for Digital Elevation Model Generation From Mars Imagery

This work presents a new dataset for the Martian digital elevation model prediction task, ready for machine learning applications called MCTED. The dataset has been generated using a comprehensive pipeline designed to process high-resolution Mars orthoimage and DEM pairs from Day et al., yielding a dataset consisting of 80,898 data samples. The source images are data gathered by the Mars Reconnaissance Orbiter using the CTX instrument, providing a very diverse and comprehensive coverage of the Martian surface. Given the complexity of the processing pipelines used in large-scale DEMs, there are often artefacts and missing data points in the original data, for which we developed tools to solve or mitigate their impact. We divide the processed samples into training and validation splits, ensuring samples in both splits cover no mutual areas to avoid data leakage. Every sample in the dataset is represented by the optical image patch, DEM patch, and two mask patches, indicating values that were originally missing or were altered by us. This allows future users of the dataset to handle altered elevation regions as they please. We provide statistical insights of the generated dataset, including the spatial distribution of samples, the distributions of elevation values, slopes and more. Finally, we train a small U-Net architecture on the MCTED dataset and compare its performance to a monocular depth estimation foundation model, DepthAnythingV2, on the task of elevation prediction. We find that even a very small architecture trained on this dataset specifically, beats a zero-shot performance of a depth estimation foundation model like DepthAnythingV2. We make the dataset and code used for its generation completely open source in public repositories.

ESA-Datalabs ESA Datalabs
·
Sep 9, 2025

DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps

In this paper, we present DendroMap, a novel approach to interactively exploring large-scale image datasets for machine learning (ML). ML practitioners often explore image datasets by generating a grid of images or projecting high-dimensional representations of images into 2-D using dimensionality reduction techniques (e.g., t-SNE). However, neither approach effectively scales to large datasets because images are ineffectively organized and interactions are insufficiently supported. To address these challenges, we develop DendroMap by adapting Treemaps, a well-known visualization technique. DendroMap effectively organizes images by extracting hierarchical cluster structures from high-dimensional representations of images. It enables users to make sense of the overall distributions of datasets and interactively zoom into specific areas of interests at multiple levels of abstraction. Our case studies with widely-used image datasets for deep learning demonstrate that users can discover insights about datasets and trained models by examining the diversity of images, identifying underperforming subgroups, and analyzing classification errors. We conducted a user study that evaluates the effectiveness of DendroMap in grouping and searching tasks by comparing it with a gridified version of t-SNE and found that participants preferred DendroMap. DendroMap is available at https://div-lab.github.io/dendromap/.

  • 7 authors
·
May 13, 2022

Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction

Light plays an important role in human well-being. However, most computer vision tasks treat pixels without considering their relationship to physical luminance. To address this shortcoming, we introduce the Laval Photometric Indoor HDR Dataset, the first large-scale photometrically calibrated dataset of high dynamic range 360{\deg} panoramas. Our key contribution is the calibration of an existing, uncalibrated HDR Dataset. We do so by accurately capturing RAW bracketed exposures simultaneously with a professional photometric measurement device (chroma meter) for multiple scenes across a variety of lighting conditions. Using the resulting measurements, we establish the calibration coefficients to be applied to the HDR images. The resulting dataset is a rich representation of indoor scenes which displays a wide range of illuminance and color, and varied types of light sources. We exploit the dataset to introduce three novel tasks, where: per-pixel luminance, per-pixel color and planar illuminance can be predicted from a single input image. Finally, we also capture another smaller photometric dataset with a commercial 360{\deg} camera, to experiment on generalization across cameras. We are optimistic that the release of our datasets and associated code will spark interest in physically accurate light estimation within the community. Dataset and code are available at https://lvsn.github.io/beyondthepixel/.

  • 5 authors
·
Apr 24, 2023

ImageInWords: Unlocking Hyper-Detailed Image Descriptions

Despite the longstanding adage "an image is worth a thousand words," creating accurate and hyper-detailed image descriptions for training Vision-Language models remains challenging. Current datasets typically have web-scraped descriptions that are short, low-granularity, and often contain details unrelated to the visual content. As a result, models trained on such data generate descriptions replete with missing information, visual inconsistencies, and hallucinations. To address these issues, we introduce ImageInWords (IIW), a carefully designed human-in-the-loop annotation framework for curating hyper-detailed image descriptions and a new dataset resulting from this process. We validate the framework through evaluations focused on the quality of the dataset and its utility for fine-tuning with considerations for readability, comprehensiveness, specificity, hallucinations, and human-likeness. Our dataset significantly improves across these dimensions compared to recently released datasets (+66%) and GPT-4V outputs (+48%). Furthermore, models fine-tuned with IIW data excel by +31% against prior work along the same human evaluation dimensions. Given our fine-tuned models, we also evaluate text-to-image generation and vision-language reasoning. Our model's descriptions can generate images closest to the original, as judged by both automated and human metrics. We also find our model produces more compositionally rich descriptions, outperforming the best baseline by up to 6% on ARO, SVO-Probes, and Winoground datasets.

  • 10 authors
·
May 4, 2024

V2X-Real: a Large-Scale Dataset for Vehicle-to-Everything Cooperative Perception

Recent advancements in Vehicle-to-Everything (V2X) technologies have enabled autonomous vehicles to share sensing information to see through occlusions, greatly boosting the perception capability. However, there are no real-world datasets to facilitate the real V2X cooperative perception research -- existing datasets either only support Vehicle-to-Infrastructure cooperation or Vehicle-to-Vehicle cooperation. In this paper, we present V2X-Real, a large-scale dataset that includes a mixture of multiple vehicles and smart infrastructure to facilitate the V2X cooperative perception development with multi-modality sensing data. Our V2X-Real is collected using two connected automated vehicles and two smart infrastructure, which are all equipped with multi-modal sensors including LiDAR sensors and multi-view cameras. The whole dataset contains 33K LiDAR frames and 171K camera data with over 1.2M annotated bounding boxes of 10 categories in very challenging urban scenarios. According to the collaboration mode and ego perspective, we derive four types of datasets for Vehicle-Centric, Infrastructure-Centric, Vehicle-to-Vehicle, and Infrastructure-to-Infrastructure cooperative perception. Comprehensive multi-class multi-agent benchmarks of SOTA cooperative perception methods are provided. The V2X-Real dataset and codebase are available at https://mobility-lab.seas.ucla.edu/v2x-real.

  • 18 authors
·
Mar 24, 2024

VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information

Errors in understanding visual information in images (i.e., visual perception errors) remain a major source of mistakes in Large Vision Language Models (LVLMs). While further analysis is essential, there is a deficiency in datasets for evaluating the visual perception of LVLMs. In this work, we introduce VisOnlyQA, a new dataset designed to directly evaluate the visual perception capabilities of LVLMs on questions about geometric and numerical information in scientific figures. Our dataset enables us to analyze the visual perception of LVLMs for fine-grained visual information, independent of other capabilities such as reasoning. The evaluation set of VisOnlyQA includes 1,200 multiple-choice questions in 12 tasks on four categories of figures. We also provide synthetic training data consisting of 70k instances. Our experiments on VisOnlyQA highlight the following findings: (i) 20 LVLMs we evaluate, including GPT-4o and Gemini 1.5 Pro, work poorly on the visual perception tasks in VisOnlyQA, while human performance is nearly perfect. (ii) Fine-tuning on synthetic training data demonstrates the potential for enhancing the visual perception of LVLMs, but observed improvements are limited to certain tasks and specific models. (iii) Stronger language models improve the visual perception of LVLMs. In summary, our experiments suggest that both training data and model architectures should be improved to enhance the visual perception capabilities of LVLMs. The datasets, code, and model responses are provided at https://github.com/psunlpgroup/VisOnlyQA.

  • 5 authors
·
Dec 1, 2024 2

3DReasonKnee: Advancing Grounded Reasoning in Medical Vision Language Models

Current Vision-Language Models (VLMs) struggle to ground anatomical regions in 3D medical images and reason about them in a step-by-step manner, a key requirement of real-world diagnostic assessment. This ability is essential for aligning model outputs with the diagnostic workflows clinicians use in practice, enabling trustworthy clinician-AI collaboration. Existing 3D datasets provide localization labels, but none support this "grounded reasoning" ability. To address this gap, we introduce 3DReasonKnee, the first 3D grounded reasoning dataset for medical images, which provides 494k high-quality quintuples derived from 7,970 3D knee MRI volumes. Each quintuple includes: (1) the 3D MRI volume, (2) a diagnostic question targeting a specific anatomical region (3) a 3D bounding box localizing the relevant anatomical structures, (4) clinician-generated diagnostic reasoning steps that explicitly detail the 3D reasoning process, and (5) structured severity assessments for the relevant anatomical region. The creation and validation of 3DReasonKnee, involving over 450 hours of expert clinician time for manually segmenting MRIs and generating reasoning chains, ensures its superior quality and clinical relevance. We establish ReasonKnee-Bench to evaluate localization and diagnostic accuracy, providing insight into VLM ability to perform grounding and severity assessment across anatomical regions and diagnostic inquiries. We benchmark five state-of-the-art VLMs, providing baseline performance for ReasonKnee-Bench. By providing this unique resource of expert-annotated 3D reasoning pathways, 3DReasonKnee serves as a repository of orthopedic surgeons' diagnostic expertise and offers a vital testbed for advancing multimodal medical AI systems towards 3D, clinically aligned, localized decision-making capabilities. The dataset can be found in: https://huggingface.co/datasets/rajpurkarlab/3DReasonKnee

  • 8 authors
·
Oct 23, 2025

DA^2: Depth Anything in Any Direction

Panorama has a full FoV (360^circtimes180^circ), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose DA^{2}: Depth Anything in Any Direction, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create sim543K panoramic RGB-depth pairs, bringing the total to sim607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA^{2}'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA^{2} even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA^{2} exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data will be released. Project page: https://depth-any-in-any-dir.github.io/.

Tencent-Hunyuan Tencent Hunyuan
·
Sep 30, 2025 2

OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control

We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.

  • 10 authors
·
Nov 4, 2025

UnifiedVisual: A Framework for Constructing Unified Vision-Language Datasets

Unified vision large language models (VLLMs) have recently achieved impressive advancements in both multimodal understanding and generation, powering applications such as visual question answering and text-guided image synthesis. However, progress in unified VLLMs remains constrained by the lack of datasets that fully exploit the synergistic potential between these two core abilities. Existing datasets typically address understanding and generation in isolation, thereby limiting the performance of unified VLLMs. To bridge this critical gap, we introduce a novel dataset construction framework, UnifiedVisual, and present UnifiedVisual-240K, a high-quality dataset meticulously designed to facilitate mutual enhancement between multimodal understanding and generation. UnifiedVisual-240K seamlessly integrates diverse visual and textual inputs and outputs, enabling comprehensive cross-modal reasoning and precise text-to-image alignment. Our dataset encompasses a wide spectrum of tasks and data sources, ensuring rich diversity and addressing key shortcomings of prior resources. Extensive experiments demonstrate that models trained on UnifiedVisual-240K consistently achieve strong performance across a wide range of tasks. Notably, these models exhibit significant mutual reinforcement between multimodal understanding and generation, further validating the effectiveness of our framework and dataset. We believe UnifiedVisual represents a new growth point for advancing unified VLLMs and unlocking their full potential. Our code and datasets is available at https://github.com/fnlp-vision/UnifiedVisual.

  • 10 authors
·
Sep 18, 2025

PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents

Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.

  • 16 authors
·
Jun 19, 2024 1

MedVision: Dataset and Benchmark for Quantitative Medical Image Analysis

Current vision-language models (VLMs) in medicine are primarily designed for categorical question answering (e.g., "Is this normal or abnormal?") or qualitative descriptive tasks. However, clinical decision-making often relies on quantitative assessments, such as measuring the size of a tumor or the angle of a joint, from which physicians draw their own diagnostic conclusions. This quantitative reasoning capability remains underexplored and poorly supported in existing VLMs. In this work, we introduce MedVision, a large-scale dataset and benchmark specifically designed to evaluate and improve VLMs on quantitative medical image analysis. MedVision spans 22 public datasets covering diverse anatomies and modalities, with 30.8 million image-annotation pairs. We focus on three representative quantitative tasks: (1) detection of anatomical structures and abnormalities, (2) tumor/lesion (T/L) size estimation, and (3) angle/distance (A/D) measurement. Our benchmarks show that current off-the-shelf VLMs perform poorly on these tasks. However, with supervised fine-tuning on MedVision, we significantly enhance their performance across detection, T/L estimation, and A/D measurement, demonstrating reduced error rates and improved precision. This work provides a foundation for developing VLMs with robust quantitative reasoning capabilities in medical imaging. Code and data are available at https://medvision-vlm.github.io.

  • 6 authors
·
Nov 23, 2025

Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval

While image retrieval and instance recognition techniques are progressing rapidly, there is a need for challenging datasets to accurately measure their performance -- while posing novel challenges that are relevant for practical applications. We introduce the Google Landmarks Dataset v2 (GLDv2), a new benchmark for large-scale, fine-grained instance recognition and image retrieval in the domain of human-made and natural landmarks. GLDv2 is the largest such dataset to date by a large margin, including over 5M images and 200k distinct instance labels. Its test set consists of 118k images with ground truth annotations for both the retrieval and recognition tasks. The ground truth construction involved over 800 hours of human annotator work. Our new dataset has several challenging properties inspired by real world applications that previous datasets did not consider: An extremely long-tailed class distribution, a large fraction of out-of-domain test photos and large intra-class variability. The dataset is sourced from Wikimedia Commons, the world's largest crowdsourced collection of landmark photos. We provide baseline results for both recognition and retrieval tasks based on state-of-the-art methods as well as competitive results from a public challenge. We further demonstrate the suitability of the dataset for transfer learning by showing that image embeddings trained on it achieve competitive retrieval performance on independent datasets. The dataset images, ground-truth and metric scoring code are available at https://github.com/cvdfoundation/google-landmark.

  • 4 authors
·
Apr 3, 2020

Constellation Dataset: Benchmarking High-Altitude Object Detection for an Urban Intersection

We introduce Constellation, a dataset of 13K images suitable for research on detection of objects in dense urban streetscapes observed from high-elevation cameras, collected for a variety of temporal conditions. The dataset addresses the need for curated data to explore problems in small object detection exemplified by the limited pixel footprint of pedestrians observed tens of meters from above. It enables the testing of object detection models for variations in lighting, building shadows, weather, and scene dynamics. We evaluate contemporary object detection architectures on the dataset, observing that state-of-the-art methods have lower performance in detecting small pedestrians compared to vehicles, corresponding to a 10% difference in average precision (AP). Using structurally similar datasets for pretraining the models results in an increase of 1.8% mean AP (mAP). We further find that incorporating domain-specific data augmentations helps improve model performance. Using pseudo-labeled data, obtained from inference outcomes of the best-performing models, improves the performance of the models. Finally, comparing the models trained using the data collected in two different time intervals, we find a performance drift in models due to the changes in intersection conditions over time. The best-performing model achieves a pedestrian AP of 92.0% with 11.5 ms inference time on NVIDIA A100 GPUs, and an mAP of 95.4%.

  • 9 authors
·
Apr 25, 2024

MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension

The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.

  • 14 authors
·
Jul 5, 2024

OmniHD-Scenes: A Next-Generation Multimodal Dataset for Autonomous Driving

The rapid advancement of deep learning has intensified the need for comprehensive data for use by autonomous driving algorithms. High-quality datasets are crucial for the development of effective data-driven autonomous driving solutions. Next-generation autonomous driving datasets must be multimodal, incorporating data from advanced sensors that feature extensive data coverage, detailed annotations, and diverse scene representation. To address this need, we present OmniHD-Scenes, a large-scale multimodal dataset that provides comprehensive omnidirectional high-definition data. The OmniHD-Scenes dataset combines data from 128-beam LiDAR, six cameras, and six 4D imaging radar systems to achieve full environmental perception. The dataset comprises 1501 clips, each approximately 30-s long, totaling more than 450K synchronized frames and more than 5.85 million synchronized sensor data points. We also propose a novel 4D annotation pipeline. To date, we have annotated 200 clips with more than 514K precise 3D bounding boxes. These clips also include semantic segmentation annotations for static scene elements. Additionally, we introduce a novel automated pipeline for generation of the dense occupancy ground truth, which effectively leverages information from non-key frames. Alongside the proposed dataset, we establish comprehensive evaluation metrics, baseline models, and benchmarks for 3D detection and semantic occupancy prediction. These benchmarks utilize surround-view cameras and 4D imaging radar to explore cost-effective sensor solutions for autonomous driving applications. Extensive experiments demonstrate the effectiveness of our low-cost sensor configuration and its robustness under adverse conditions. Data will be released at https://www.2077ai.com/OmniHD-Scenes.

  • 13 authors
·
Dec 14, 2024

Presenting an extensive lab- and field-image dataset of crops and weeds for computer vision tasks in agriculture

We present two large datasets of labelled plant-images that are suited towards the training of machine learning and computer vision models. The first dataset encompasses as the day of writing over 1.2 million images of indoor-grown crops and weeds common to the Canadian Prairies and many US states. The second dataset consists of over 540,000 images of plants imaged in farmland. All indoor plant images are labelled by species and we provide rich etadata on the level of individual images. This comprehensive database allows to filter the datasets under user-defined specifications such as for example the crop-type or the age of the plant. Furthermore, the indoor dataset contains images of plants taken from a wide variety of angles, including profile shots, top-down shots, and angled perspectives. The images taken from plants in fields are all from a top-down perspective and contain usually multiple plants per image. For these images metadata is also available. In this paper we describe both datasets' characteristics with respect to plant variety, plant age, and number of images. We further introduce an open-access sample of the indoor-dataset that contains 1,000 images of each species covered in our dataset. These, in total 14,000 images, had been selected, such that they form a representative sample with respect to plant age and ndividual plants per species. This sample serves as a quick entry point for new users to the dataset, allowing them to explore the data on a small scale and find the parameters of data most useful for their application without having to deal with hundreds of thousands of individual images.

  • 6 authors
·
Aug 12, 2021

Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis

Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.

OralGPT OralGPT-Series
·
Sep 11, 2025 2

ZoomEye: Enhancing Multimodal LLMs with Human-Like Zooming Capabilities through Tree-Based Image Exploration

An image, especially with high-resolution, typically consists of numerous visual elements, ranging from dominant large objects to fine-grained detailed objects. When perceiving such images, multimodal large language models~(MLLMs) face limitations due to the restricted input resolution of the pretrained vision encoder and the cluttered, dense context of the image, resulting in a focus on primary objects while easily overlooking detailed ones. In this paper, we propose Zoom Eye, a tree search algorithm designed to navigate the hierarchical and visual nature of images to capture relevant information. Zoom Eye conceptualizes an image as a tree, with each children node representing a zoomed sub-patch of the parent node and the root represents the overall image. Moreover, Zoom Eye is model-agnostic and training-free, so it enables any MLLMs to simulate human zooming actions by searching along the image tree from root to leaf nodes, seeking out pertinent information, and accurately responding to related queries. We experiment on a series of elaborate high-resolution benchmarks and the results demonstrate that Zoom Eye not only consistently improves the performance of a series base MLLMs with large margin~(e.g., LLaVA-v1.5-7B increases by 34.57\% on V^* Bench and 17.88\% on HR-Bench), but also enables small 7B MLLMs to outperform strong large models such as GPT-4o. Our code is available at https://github.com/om-ai-lab/ZoomEye{https://github.com/om-ai-lab/ZoomEye}.

  • 7 authors
·
Nov 24, 2024

StereoCarla: A High-Fidelity Driving Dataset for Generalizable Stereo

Stereo matching plays a crucial role in enabling depth perception for autonomous driving and robotics. While recent years have witnessed remarkable progress in stereo matching algorithms, largely driven by learning-based methods and synthetic datasets, the generalization performance of these models remains constrained by the limited diversity of existing training data. To address these challenges, we present StereoCarla, a high-fidelity synthetic stereo dataset specifically designed for autonomous driving scenarios. Built on the CARLA simulator, StereoCarla incorporates a wide range of camera configurations, including diverse baselines, viewpoints, and sensor placements as well as varied environmental conditions such as lighting changes, weather effects, and road geometries. We conduct comprehensive cross-domain experiments across four standard evaluation datasets (KITTI2012, KITTI2015, Middlebury, ETH3D) and demonstrate that models trained on StereoCarla outperform those trained on 11 existing stereo datasets in terms of generalization accuracy across multiple benchmarks. Furthermore, when integrated into multi-dataset training, StereoCarla contributes substantial improvements to generalization accuracy, highlighting its compatibility and scalability. This dataset provides a valuable benchmark for developing and evaluating stereo algorithms under realistic, diverse, and controllable settings, facilitating more robust depth perception systems for autonomous vehicles. Code can be available at https://github.com/XiandaGuo/OpenStereo, and data can be available at https://xiandaguo.net/StereoCarla.

  • 9 authors
·
Sep 16, 2025

GeoPlant: Spatial Plant Species Prediction Dataset

The difficulty of monitoring biodiversity at fine scales and over large areas limits ecological knowledge and conservation efforts. To fill this gap, Species Distribution Models (SDMs) predict species across space from spatially explicit features. Yet, they face the challenge of integrating the rich but heterogeneous data made available over the past decade, notably millions of opportunistic species observations and standardized surveys, as well as multi-modal remote sensing data. In light of that, we have designed and developed a new European-scale dataset for SDMs at high spatial resolution (10-50 m), including more than 10k species (i.e., most of the European flora). The dataset comprises 5M heterogeneous Presence-Only records and 90k exhaustive Presence-Absence survey records, all accompanied by diverse environmental rasters (e.g., elevation, human footprint, and soil) that are traditionally used in SDMs. In addition, it provides Sentinel-2 RGB and NIR satellite images with 10 m resolution, a 20-year time-series of climatic variables, and satellite time-series from the Landsat program. In addition to the data, we provide an openly accessible SDM benchmark (hosted on Kaggle), which has already attracted an active community and a set of strong baselines for single predictor/modality and multimodal approaches. All resources, e.g., the dataset, pre-trained models, and baseline methods (in the form of notebooks), are available on Kaggle, allowing one to start with our dataset literally with two mouse clicks.

  • 10 authors
·
Aug 25, 2024

CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving

Autonomous driving, particularly navigating complex and unanticipated scenarios, demands sophisticated reasoning and planning capabilities. While Multi-modal Large Language Models (MLLMs) offer a promising avenue for this, their use has been largely confined to understanding complex environmental contexts or generating high-level driving commands, with few studies extending their application to end-to-end path planning. A major research bottleneck is the lack of large-scale annotated datasets encompassing vision, language, and action. To address this issue, we propose CoVLA (Comprehensive Vision-Language-Action) Dataset, an extensive dataset comprising real-world driving videos spanning more than 80 hours. This dataset leverages a novel, scalable approach based on automated data processing and a caption generation pipeline to generate accurate driving trajectories paired with detailed natural language descriptions of driving environments and maneuvers. This approach utilizes raw in-vehicle sensor data, allowing it to surpass existing datasets in scale and annotation richness. Using CoVLA, we investigate the driving capabilities of MLLMs that can handle vision, language, and action in a variety of driving scenarios. Our results illustrate the strong proficiency of our model in generating coherent language and action outputs, emphasizing the potential of Vision-Language-Action (VLA) models in the field of autonomous driving. This dataset establishes a framework for robust, interpretable, and data-driven autonomous driving systems by providing a comprehensive platform for training and evaluating VLA models, contributing to safer and more reliable self-driving vehicles. The dataset is released for academic purpose.

  • 7 authors
·
Aug 19, 2024

RemoteSAM: Towards Segment Anything for Earth Observation

We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.

  • 9 authors
·
May 23, 2025

OAM-TCD: A globally diverse dataset of high-resolution tree cover maps

Accurately quantifying tree cover is an important metric for ecosystem monitoring and for assessing progress in restored sites. Recent works have shown that deep learning-based segmentation algorithms are capable of accurately mapping trees at country and continental scales using high-resolution aerial and satellite imagery. Mapping at high (ideally sub-meter) resolution is necessary to identify individual trees, however there are few open-access datasets containing instance level annotations and those that exist are small or not geographically diverse. We present a novel open-access dataset for individual tree crown delineation (TCD) in high-resolution aerial imagery sourced from OpenAerialMap (OAM). Our dataset, OAM-TCD, comprises 5072 2048x2048 px images at 10 cm/px resolution with associated human-labeled instance masks for over 280k individual and 56k groups of trees. By sampling imagery from around the world, we are able to better capture the diversity and morphology of trees in different terrestrial biomes and in both urban and natural environments. Using our dataset, we train reference instance and semantic segmentation models that compare favorably to existing state-of-the-art models. We assess performance through k-fold cross-validation and comparison with existing datasets; additionally we demonstrate compelling results on independent aerial imagery captured over Switzerland and compare to municipal tree inventories and LIDAR-derived canopy maps in the city of Zurich. Our dataset, models and training/benchmark code are publicly released under permissive open-source licenses: Creative Commons (majority CC BY 4.0), and Apache 2.0 respectively.

  • 8 authors
·
Jul 16, 2024