new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

MultiPhishGuard: An LLM-based Multi-Agent System for Phishing Email Detection

Phishing email detection faces critical challenges from evolving adversarial tactics and heterogeneous attack patterns. Traditional detection methods, such as rule-based filters and denylists, often struggle to keep pace with these evolving tactics, leading to false negatives and compromised security. While machine learning approaches have improved detection accuracy, they still face challenges adapting to novel phishing strategies. We present MultiPhishGuard, a dynamic LLM-based multi-agent detection system that synergizes specialized expertise with adversarial-aware reinforcement learning. Our framework employs five cooperative agents (text, URL, metadata, explanation simplifier, and adversarial agents) with automatically adjusted decision weights powered by a Proximal Policy Optimization reinforcement learning algorithm. To address emerging threats, we introduce an adversarial training loop featuring an adversarial agent that generates subtle context-aware email variants, creating a self-improving defense ecosystem and enhancing system robustness. Experimental evaluations on public datasets demonstrate that MultiPhishGuard significantly outperforms Chain-of-Thoughts, single-agent baselines and state-of-the-art detectors, as validated by ablation studies and comparative analyses. Experiments demonstrate that MultiPhishGuard achieves high accuracy (97.89\%) with low false positive (2.73\%) and false negative rates (0.20\%). Additionally, we incorporate an explanation simplifier agent, which provides users with clear and easily understandable explanations for why an email is classified as phishing or legitimate. This work advances phishing defense through dynamic multi-agent collaboration and generative adversarial resilience.

  • 4 authors
·
May 26, 2025

SAID: Empowering Large Language Models with Self-Activating Internal Defense

Large Language Models (LLMs), despite advances in safety alignment, remain vulnerable to jailbreak attacks designed to circumvent protective mechanisms. Prevailing defense strategies rely on external interventions, such as input filtering or output modification, which often lack generalizability and compromise model utility while incurring significant computational overhead. In this work, we introduce a new, training-free defense paradigm, Self-Activating Internal Defense (SAID), which reframes the defense task from external correction to internal capability activation. SAID uniquely leverages the LLM's own reasoning abilities to proactively identify and neutralize malicious intent through a three-stage pipeline: model-native intent distillation to extract core semantics, optimal safety prefix probing to activate latent safety awareness, and a conservative aggregation strategy to ensure robust decision-making. Extensive experiments on five open-source LLMs against six advanced jailbreak attacks demonstrate that SAID substantially outperforms state-of-the-art defenses in reducing harmful outputs. Crucially, it achieves this while preserving model performance on benign tasks and incurring minimal computational overhead. Our work establishes that activating the intrinsic safety mechanisms of LLMs is a more robust and scalable path toward building safer and more reliable aligned AI systems.

  • 6 authors
·
Oct 22, 2025

A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory

Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard

  • 10 authors
·
Sep 29, 2025

Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails

As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.

  • 10 authors
·
Oct 6, 2025 2

TeleAI-Safety: A comprehensive LLM jailbreaking benchmark towards attacks, defenses, and evaluations

While the deployment of large language models (LLMs) in high-value industries continues to expand, the systematic assessment of their safety against jailbreak and prompt-based attacks remains insufficient. Existing safety evaluation benchmarks and frameworks are often limited by an imbalanced integration of core components (attack, defense, and evaluation methods) and an isolation between flexible evaluation frameworks and standardized benchmarking capabilities. These limitations hinder reliable cross-study comparisons and create unnecessary overhead for comprehensive risk assessment. To address these gaps, we present TeleAI-Safety, a modular and reproducible framework coupled with a systematic benchmark for rigorous LLM safety evaluation. Our framework integrates a broad collection of 19 attack methods (including one self-developed method), 29 defense methods, and 19 evaluation methods (including one self-developed method). With a curated attack corpus of 342 samples spanning 12 distinct risk categories, the TeleAI-Safety benchmark conducts extensive evaluations across 14 target models. The results reveal systematic vulnerabilities and model-specific failure cases, highlighting critical trade-offs between safety and utility, and identifying potential defense patterns for future optimization. In practical scenarios, TeleAI-Safety can be flexibly adjusted with customized attack, defense, and evaluation combinations to meet specific demands. We release our complete code and evaluation results to facilitate reproducible research and establish unified safety baselines.

  • 13 authors
·
Dec 5, 2025

Exploring the Role of Large Language Models in Cybersecurity: A Systematic Survey

With the rapid development of technology and the acceleration of digitalisation, the frequency and complexity of cyber security threats are increasing. Traditional cybersecurity approaches, often based on static rules and predefined scenarios, are struggling to adapt to the rapidly evolving nature of modern cyberattacks. There is an urgent need for more adaptive and intelligent defence strategies. The emergence of Large Language Model (LLM) provides an innovative solution to cope with the increasingly severe cyber threats, and its potential in analysing complex attack patterns, predicting threats and assisting real-time response has attracted a lot of attention in the field of cybersecurity, and exploring how to effectively use LLM to defend against cyberattacks has become a hot topic in the current research field. This survey examines the applications of LLM from the perspective of the cyber attack lifecycle, focusing on the three phases of defense reconnaissance, foothold establishment, and lateral movement, and it analyzes the potential of LLMs in Cyber Threat Intelligence (CTI) tasks. Meanwhile, we investigate how LLM-based security solutions are deployed and applied in different network scenarios. It also summarizes the internal and external risk issues faced by LLM during its application. Finally, this survey also points out the facing risk issues and possible future research directions in this domain.

  • 11 authors
·
Apr 22, 2025

AI Kill Switch for malicious web-based LLM agent

Recently, web-based Large Language Model (LLM) agents autonomously perform increasingly complex tasks, thereby bringing significant convenience. However, they also amplify the risks of malicious misuse cases such as unauthorized collection of personally identifiable information (PII), generation of socially divisive content, and even automated web hacking. To address these threats, we propose an AI Kill Switch technique that can immediately halt the operation of malicious web-based LLM agents. To achieve this, we introduce AutoGuard - the key idea is generating defensive prompts that trigger the safety mechanisms of malicious LLM agents. In particular, generated defense prompts are transparently embedded into the website's DOM so that they remain invisible to human users but can be detected by the crawling process of malicious agents, triggering its internal safety mechanisms to abort malicious actions once read. To evaluate our approach, we constructed a dedicated benchmark consisting of three representative malicious scenarios (PII collection, social rift content generation, and web hacking attempts). Experimental results show that the AutoGuard method achieves over 80% Defense Success Rate (DSR) on malicious agents, including GPT-4o, Claude-3, and Llama3.3-70B-Instruct. It also maintains strong performance, achieving around 90% DSR on GPT-5, GPT-4.1, and Gemini-2.5-Flash when used as the malicious agent, demonstrating robust generalization across models and scenarios. Through this research, we have demonstrated the controllability of web-based LLM agents across various scenarios and models, thereby contributing to the broader effort of AI control and safety.

  • 2 authors
·
Sep 25, 2025

Generative AI and Large Language Models for Cyber Security: All Insights You Need

This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.

  • 6 authors
·
May 21, 2024

AutoAttacker: A Large Language Model Guided System to Implement Automatic Cyber-attacks

Large language models (LLMs) have demonstrated impressive results on natural language tasks, and security researchers are beginning to employ them in both offensive and defensive systems. In cyber-security, there have been multiple research efforts that utilize LLMs focusing on the pre-breach stage of attacks like phishing and malware generation. However, so far there lacks a comprehensive study regarding whether LLM-based systems can be leveraged to simulate the post-breach stage of attacks that are typically human-operated, or "hands-on-keyboard" attacks, under various attack techniques and environments. As LLMs inevitably advance, they may be able to automate both the pre- and post-breach attack stages. This shift may transform organizational attacks from rare, expert-led events to frequent, automated operations requiring no expertise and executed at automation speed and scale. This risks fundamentally changing global computer security and correspondingly causing substantial economic impacts, and a goal of this work is to better understand these risks now so we can better prepare for these inevitable ever-more-capable LLMs on the horizon. On the immediate impact side, this research serves three purposes. First, an automated LLM-based, post-breach exploitation framework can help analysts quickly test and continually improve their organization's network security posture against previously unseen attacks. Second, an LLM-based penetration test system can extend the effectiveness of red teams with a limited number of human analysts. Finally, this research can help defensive systems and teams learn to detect novel attack behaviors preemptively before their use in the wild....

  • 8 authors
·
Mar 1, 2024

MoGU: A Framework for Enhancing Safety of Open-Sourced LLMs While Preserving Their Usability

Large Language Models (LLMs) are increasingly deployed in various applications. As their usage grows, concerns regarding their safety are rising, especially in maintaining harmless responses when faced with malicious instructions. Many defense strategies have been developed to enhance the safety of LLMs. However, our research finds that existing defense strategies lead LLMs to predominantly adopt a rejection-oriented stance, thereby diminishing the usability of their responses to benign instructions. To solve this problem, we introduce the MoGU framework, designed to enhance LLMs' safety while preserving their usability. Our MoGU framework transforms the base LLM into two variants: the usable LLM and the safe LLM, and further employs dynamic routing to balance their contribution. When encountering malicious instructions, the router will assign a higher weight to the safe LLM to ensure that responses are harmless. Conversely, for benign instructions, the router prioritizes the usable LLM, facilitating usable and helpful responses. On various open-sourced LLMs, we compare multiple defense strategies to verify the superiority of our MoGU framework. Besides, our analysis provides key insights into the effectiveness of MoGU and verifies that our designed routing mechanism can effectively balance the contribution of each variant by assigning weights. Our work released the safer Llama2, Vicuna, Falcon, Dolphin, and Baichuan2.

  • 9 authors
·
May 23, 2024

OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!

Large Language Model (LLM) safety is one of the most pressing challenges for enabling wide-scale deployment. While most studies and global discussions focus on generic harms, such as models assisting users in harming themselves or others, enterprises face a more fundamental concern: whether LLM-based agents are safe for their intended use case. To address this, we introduce operational safety, defined as an LLM's ability to appropriately accept or refuse user queries when tasked with a specific purpose. We further propose OffTopicEval, an evaluation suite and benchmark for measuring operational safety both in general and within specific agentic use cases. Our evaluations on six model families comprising 20 open-weight LLMs reveal that while performance varies across models, all of them remain highly operationally unsafe. Even the strongest models -- Qwen-3 (235B) with 77.77\% and Mistral (24B) with 79.96\% -- fall far short of reliable operational safety, while GPT models plateau in the 62--73\% range, Phi achieves only mid-level scores (48--70\%), and Gemma and Llama-3 collapse to 39.53\% and 23.84\%, respectively. While operational safety is a core model alignment issue, to suppress these failures, we propose prompt-based steering methods: query grounding (Q-ground) and system-prompt grounding (P-ground), which substantially improve OOD refusal. Q-ground provides consistent gains of up to 23\%, while P-ground delivers even larger boosts, raising Llama-3.3 (70B) by 41\% and Qwen-3 (30B) by 27\%. These results highlight both the urgent need for operational safety interventions and the promise of prompt-based steering as a first step toward more reliable LLM-based agents.

Do LLMs Have Political Correctness? Analyzing Ethical Biases and Jailbreak Vulnerabilities in AI Systems

Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content. To address these issues, many LLM developers have implemented various safety measures to align these models. This alignment involves several techniques, including data filtering during pre-training, supervised fine-tuning, reinforcement learning from human feedback, and red-teaming exercises. These methods often introduce deliberate and intentional biases similar to Political Correctness (PC) to ensure the ethical behavior of LLMs. In this paper, we delve into the intentional biases injected into LLMs for safety purposes and examine methods to circumvent these safety alignment techniques. Notably, these intentional biases result in a jailbreaking success rate in GPT-4o models that differs by 20% between non-binary and cisgender keywords and by 16% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of PCJailbreak, highlighting the inherent risks posed by these safety-induced biases. Additionally, we propose an efficient defense method PCDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. PCDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize the urgent need for LLM developers to adopt a more responsible approach when designing and implementing safety measures.

  • 2 authors
·
Oct 17, 2024 2

From Poisoned to Aware: Fostering Backdoor Self-Awareness in LLMs

Large Language Models (LLMs) can acquire deceptive behaviors through backdoor attacks, where the model executes prohibited actions whenever secret triggers appear in the input. Existing safety training methods largely fail to address this vulnerability, due to the inherent difficulty of uncovering hidden triggers implanted in the model. Motivated by recent findings on LLMs' situational awareness, we propose a novel post-training framework that cultivates self-awareness of backdoor risks and enables models to articulate implanted triggers even when they are absent from the prompt. At its core, our approach introduces an inversion-inspired reinforcement learning framework that encourages models to introspectively reason about their own behaviors and reverse-engineer the triggers responsible for misaligned outputs. Guided by curated reward signals, this process transforms a poisoned model into one capable of precisely identifying its implanted trigger. Surprisingly, we observe that such backdoor self-awareness emerges abruptly within a short training window, resembling a phase transition in capability. Building on this emergent property, we further present two complementary defense strategies for mitigating and detecting backdoor threats. Experiments on five backdoor attacks, compared against six baseline methods, demonstrate that our approach has strong potential to improve the robustness of LLMs against backdoor risks. The code is available at LLM Backdoor Self-Awareness.

  • 7 authors
·
Oct 4, 2025

Progent: Programmable Privilege Control for LLM Agents

LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.

  • 7 authors
·
Apr 15, 2025 2

SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning

Evaluating the step-by-step reliability of large language model (LLM) reasoning, such as Chain-of-Thought, remains challenging due to the difficulty and cost of obtaining high-quality step-level supervision. In this paper, we introduce Self-Play Critic (SPC), a novel approach where a critic model evolves its ability to assess reasoning steps through adversarial self-play games, eliminating the need for manual step-level annotation. SPC involves fine-tuning two copies of a base model to play two roles, namely a "sneaky generator" that deliberately produces erroneous steps designed to be difficult to detect, and a "critic" that analyzes the correctness of reasoning steps. These two models engage in an adversarial game in which the generator aims to fool the critic, while the critic model seeks to identify the generator's errors. Using reinforcement learning based on the game outcomes, the models iteratively improve; the winner of each confrontation receives a positive reward and the loser receives a negative reward, driving continuous self-evolution. Experiments on three reasoning process benchmarks (ProcessBench, PRM800K, DeltaBench) demonstrate that our SPC progressively enhances its error detection capabilities (e.g., accuracy increases from 70.8% to 77.7% on ProcessBench) and surpasses strong baselines, including distilled R1 model. Furthermore, applying SPC to guide the test-time search of diverse LLMs significantly improves their mathematical reasoning performance on MATH500 and AIME2024, outperforming state-of-the-art process reward models.

  • 8 authors
·
Apr 27, 2025 2

AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases

LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.

  • 5 authors
·
Jul 17, 2024 3

Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents

Leveraging the rapid development of Large Language Models LLMs, LLM-based agents have been developed to handle various real-world applications, including finance, healthcare, and shopping, etc. It is crucial to ensure the reliability and security of LLM-based agents during applications. However, the safety issues of LLM-based agents are currently under-explored. In this work, we take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents. We first formulate a general framework of agent backdoor attacks, then we present a thorough analysis on the different forms of agent backdoor attacks. Specifically, from the perspective of the final attacking outcomes, the attacker can either choose to manipulate the final output distribution, or only introduce malicious behavior in the intermediate reasoning process, while keeping the final output correct. Furthermore, the former category can be divided into two subcategories based on trigger locations: the backdoor trigger can be hidden either in the user query or in an intermediate observation returned by the external environment. We propose the corresponding data poisoning mechanisms to implement the above variations of agent backdoor attacks on two typical agent tasks, web shopping and tool utilization. Extensive experiments show that LLM-based agents suffer severely from backdoor attacks, indicating an urgent need for further research on the development of defenses against backdoor attacks on LLM-based agents. Warning: This paper may contain biased content.

  • 6 authors
·
Feb 17, 2024

Multilingual Jailbreak Challenges in Large Language Models

While large language models (LLMs) exhibit remarkable capabilities across a wide range of tasks, they pose potential safety concerns, such as the ``jailbreak'' problem, wherein malicious instructions can manipulate LLMs to exhibit undesirable behavior. Although several preventive measures have been developed to mitigate the potential risks associated with LLMs, they have primarily focused on English data. In this study, we reveal the presence of multilingual jailbreak challenges within LLMs and consider two potential risk scenarios: unintentional and intentional. The unintentional scenario involves users querying LLMs using non-English prompts and inadvertently bypassing the safety mechanisms, while the intentional scenario concerns malicious users combining malicious instructions with multilingual prompts to deliberately attack LLMs. The experimental results reveal that in the unintentional scenario, the rate of unsafe content increases as the availability of languages decreases. Specifically, low-resource languages exhibit three times the likelihood of encountering harmful content compared to high-resource languages, with both ChatGPT and GPT-4. In the intentional scenario, multilingual prompts can exacerbate the negative impact of malicious instructions, with astonishingly high rates of unsafe output: 80.92\% for ChatGPT and 40.71\% for GPT-4. To handle such a challenge in the multilingual context, we propose a novel Self-Defense framework that automatically generates multilingual training data for safety fine-tuning. Experimental results show that ChatGPT fine-tuned with such data can achieve a substantial reduction in unsafe content generation. Data is available at https://github.com/DAMO-NLP-SG/multilingual-safety-for-LLMs. Warning: This paper contains examples with potentially harmful content.

  • 4 authors
·
Oct 10, 2023

You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

With the rise of generative large language models (LLMs) like LLaMA and ChatGPT, these models have significantly transformed daily life and work by providing advanced insights. However, as jailbreak attacks continue to circumvent built-in safety mechanisms, exploiting carefully crafted scenarios or tokens, the safety risks of LLMs have come into focus. While numerous defense strategies--such as prompt detection, modification, and model fine-tuning--have been proposed to counter these attacks, a critical question arises: do these defenses compromise the utility and usability of LLMs for legitimate users? Existing research predominantly focuses on the effectiveness of defense strategies without thoroughly examining their impact on performance, leaving a gap in understanding the trade-offs between LLM safety and performance. Our research addresses this gap by conducting a comprehensive study on the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies. We propose USEBench, a novel benchmark designed to evaluate these aspects, along with USEIndex, a comprehensive metric for assessing overall model performance. Through experiments on seven state-of-the-art LLMs, we found that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously. Although model-finetuning performs the best overall, their effectiveness varies across LLMs. Furthermore, vertical comparisons reveal that developers commonly prioritize performance over safety when iterating or fine-tuning their LLMs.

  • 8 authors
·
Jan 21, 2025

Goal-Oriented Prompt Attack and Safety Evaluation for LLMs

Large Language Models (LLMs) presents significant priority in text understanding and generation. However, LLMs suffer from the risk of generating harmful contents especially while being employed to applications. There are several black-box attack methods, such as Prompt Attack, which can change the behaviour of LLMs and induce LLMs to generate unexpected answers with harmful contents. Researchers are interested in Prompt Attack and Defense with LLMs, while there is no publicly available dataset with high successful attacking rate to evaluate the abilities of defending prompt attack. In this paper, we introduce a pipeline to construct high-quality prompt attack samples, along with a Chinese prompt attack dataset called CPAD. Our prompts aim to induce LLMs to generate unexpected outputs with several carefully designed prompt attack templates and widely concerned attacking contents. Different from previous datasets involving safety estimation, we construct the prompts considering three dimensions: contents, attacking methods and goals. Especially, the attacking goals indicate the behaviour expected after successfully attacking the LLMs, thus the responses can be easily evaluated and analysed. We run several popular Chinese LLMs on our dataset, and the results show that our prompts are significantly harmful to LLMs, with around 70% attack success rate to GPT-3.5. CPAD is publicly available at https://github.com/liuchengyuan123/CPAD.

  • 7 authors
·
Sep 21, 2023

Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification

Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.

  • 7 authors
·
Jul 30, 2024

AdvEvo-MARL: Shaping Internalized Safety through Adversarial Co-Evolution in Multi-Agent Reinforcement Learning

LLM-based multi-agent systems excel at planning, tool use, and role coordination, but their openness and interaction complexity also expose them to jailbreak, prompt-injection, and adversarial collaboration. Existing defenses fall into two lines: (i) self-verification that asks each agent to pre-filter unsafe instructions before execution, and (ii) external guard modules that police behaviors. The former often underperforms because a standalone agent lacks sufficient capacity to detect cross-agent unsafe chains and delegation-induced risks; the latter increases system overhead and creates a single-point-of-failure-once compromised, system-wide safety collapses, and adding more guards worsens cost and complexity. To solve these challenges, we propose AdvEvo-MARL, a co-evolutionary multi-agent reinforcement learning framework that internalizes safety into task agents. Rather than relying on external guards, AdvEvo-MARL jointly optimizes attackers (which synthesize evolving jailbreak prompts) and defenders (task agents trained to both accomplish their duties and resist attacks) in adversarial learning environments. To stabilize learning and foster cooperation, we introduce a public baseline for advantage estimation: agents within the same functional group share a group-level mean-return baseline, enabling lower-variance updates and stronger intra-group coordination. Across representative attack scenarios, AdvEvo-MARL consistently keeps attack-success rate (ASR) below 20%, whereas baselines reach up to 38.33%, while preserving-and sometimes improving-task accuracy (up to +3.67% on reasoning tasks). These results show that safety and utility can be jointly improved without relying on extra guard agents or added system overhead.

  • 16 authors
·
Oct 1, 2025 2

A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models

Large Language Models (LLMS) have increasingly become central to generating content with potential societal impacts. Notably, these models have demonstrated capabilities for generating content that could be deemed harmful. To mitigate these risks, researchers have adopted safety training techniques to align model outputs with societal values to curb the generation of malicious content. However, the phenomenon of "jailbreaking", where carefully crafted prompts elicit harmful responses from models, persists as a significant challenge. This research conducts a comprehensive analysis of existing studies on jailbreaking LLMs and their defense techniques. We meticulously investigate nine attack techniques and seven defense techniques applied across three distinct language models: Vicuna, LLama, and GPT-3.5 Turbo. We aim to evaluate the effectiveness of these attack and defense techniques. Our findings reveal that existing white-box attacks underperform compared to universal techniques and that including special tokens in the input significantly affects the likelihood of successful attacks. This research highlights the need to concentrate on the security facets of LLMs. Additionally, we contribute to the field by releasing our datasets and testing framework, aiming to foster further research into LLM security. We believe these contributions will facilitate the exploration of security measures within this domain.

  • 5 authors
·
Feb 20, 2024

MART: Improving LLM Safety with Multi-round Automatic Red-Teaming

Red-teaming is a common practice for mitigating unsafe behaviors in Large Language Models (LLMs), which involves thoroughly assessing LLMs to identify potential flaws and addressing them with responsible and accurate responses. While effective, manual red-teaming is costly, and existing automatic red-teaming typically discovers safety risks without addressing them. In this paper, we propose a Multi-round Automatic Red-Teaming (MART) method, which incorporates both automatic adversarial prompt writing and safe response generation, significantly increasing red-teaming scalability and the safety of the target LLM. Specifically, an adversarial LLM and a target LLM interplay with each other in an iterative manner, where the adversarial LLM aims to generate challenging prompts that elicit unsafe responses from the target LLM, while the target LLM is fine-tuned with safety aligned data on these adversarial prompts. In each round, the adversarial LLM crafts better attacks on the updated target LLM, while the target LLM also improves itself through safety fine-tuning. On adversarial prompt benchmarks, the violation rate of an LLM with limited safety alignment reduces up to 84.7% after 4 rounds of MART, achieving comparable performance to LLMs with extensive adversarial prompt writing. Notably, model helpfulness on non-adversarial prompts remains stable throughout iterations, indicating the target LLM maintains strong performance on instruction following.

  • 8 authors
·
Nov 13, 2023

Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios

Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.

  • 10 authors
·
May 23, 2025 1

SELF: Language-Driven Self-Evolution for Large Language Model

Large Language Models (LLMs) have showcased remarkable versatility across diverse domains. However, the pathway toward autonomous model development, a cornerstone for achieving human-level learning and advancing autonomous AI, remains largely uncharted. We introduce an innovative approach, termed "SELF" (Self-Evolution with Language Feedback). This methodology empowers LLMs to undergo continual self-evolution. Furthermore, SELF employs language-based feedback as a versatile and comprehensive evaluative tool, pinpointing areas for response refinement and bolstering the stability of self-evolutionary training. Initiating with meta-skill learning, SELF acquires foundational meta-skills with a focus on self-feedback and self-refinement. These meta-skills are critical, guiding the model's subsequent self-evolution through a cycle of perpetual training with self-curated data, thereby enhancing its intrinsic abilities. Given unlabeled instructions, SELF equips the model with the capability to autonomously generate and interactively refine responses. This synthesized training data is subsequently filtered and utilized for iterative fine-tuning, enhancing the model's capabilities. Experimental results on representative benchmarks substantiate that SELF can progressively advance its inherent abilities without the requirement of human intervention, thereby indicating a viable pathway for autonomous model evolution. Additionally, SELF can employ online self-refinement strategy to produce responses of superior quality. In essence, the SELF framework signifies a progressive step towards autonomous LLM development, transforming the LLM from a mere passive recipient of information into an active participant in its own evolution.

  • 9 authors
·
Sep 30, 2023

Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability

Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.

facebook AI at Meta
·
Jan 26 3

CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models

Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks. We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities. We introduce two new areas for testing: prompt injection and code interpreter abuse. We evaluated multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama. Our results show that conditioning away risk of attack remains an unsolved problem; for example, all tested models showed between 26% and 41% successful prompt injection tests. We further introduce the safety-utility tradeoff: conditioning an LLM to reject unsafe prompts can cause the LLM to falsely reject answering benign prompts, which lowers utility. We propose quantifying this tradeoff using False Refusal Rate (FRR). As an illustration, we introduce a novel test set to quantify FRR for cyberattack helpfulness risk. We find many LLMs able to successfully comply with "borderline" benign requests while still rejecting most unsafe requests. Finally, we quantify the utility of LLMs for automating a core cybersecurity task, that of exploiting software vulnerabilities. This is important because the offensive capabilities of LLMs are of intense interest; we quantify this by creating novel test sets for four representative problems. We find that models with coding capabilities perform better than those without, but that further work is needed for LLMs to become proficient at exploit generation. Our code is open source and can be used to evaluate other LLMs.

  • 13 authors
·
Apr 19, 2024

Beyond Jailbreak: Unveiling Risks in LLM Applications Arising from Blurred Capability Boundaries

LLM applications (i.e., LLM apps) leverage the powerful capabilities of LLMs to provide users with customized services, revolutionizing traditional application development. While the increasing prevalence of LLM-powered applications provides users with unprecedented convenience, it also brings forth new security challenges. For such an emerging ecosystem, the security community lacks sufficient understanding of the LLM application ecosystem, especially regarding the capability boundaries of the applications themselves. In this paper, we systematically analyzed the new development paradigm and defined the concept of the LLM app capability space. We also uncovered potential new risks beyond jailbreak that arise from ambiguous capability boundaries in real-world scenarios, namely, capability downgrade and upgrade. To evaluate the impact of these risks, we designed and implemented an LLM app capability evaluation framework, LLMApp-Eval. First, we collected application metadata across 4 platforms and conducted a cross-platform ecosystem analysis. Then, we evaluated the risks for 199 popular applications among 4 platforms and 6 open-source LLMs. We identified that 178 (89.45%) potentially affected applications, which can perform tasks from more than 15 scenarios or be malicious. We even found 17 applications in our study that executed malicious tasks directly, without applying any adversarial rewriting. Furthermore, our experiments also reveal a positive correlation between the quality of prompt design and application robustness. We found that well-designed prompts enhance security, while poorly designed ones can facilitate abuse. We hope our work inspires the community to focus on the real-world risks of LLM applications and foster the development of a more robust LLM application ecosystem.

  • 7 authors
·
Nov 21, 2025

LLMs Encode Harmfulness and Refusal Separately

LLMs are trained to refuse harmful instructions, but do they truly understand harmfulness beyond just refusing? Prior work has shown that LLMs' refusal behaviors can be mediated by a one-dimensional subspace, i.e., a refusal direction. In this work, we identify a new dimension to analyze safety mechanisms in LLMs, i.e., harmfulness, which is encoded internally as a separate concept from refusal. There exists a harmfulness direction that is distinct from the refusal direction. As causal evidence, steering along the harmfulness direction can lead LLMs to interpret harmless instructions as harmful, but steering along the refusal direction tends to elicit refusal responses directly without reversing the model's judgment on harmfulness. Furthermore, using our identified harmfulness concept, we find that certain jailbreak methods work by reducing the refusal signals without reversing the model's internal belief of harmfulness. We also find that adversarially finetuning models to accept harmful instructions has minimal impact on the model's internal belief of harmfulness. These insights lead to a practical safety application: The model's latent harmfulness representation can serve as an intrinsic safeguard (Latent Guard) for detecting unsafe inputs and reducing over-refusals that is robust to finetuning attacks. For instance, our Latent Guard achieves performance comparable to or better than Llama Guard 3 8B, a dedicated finetuned safeguard model, across different jailbreak methods. Our findings suggest that LLMs' internal understanding of harmfulness is more robust than their refusal decision to diverse input instructions, offering a new perspective to study AI safety

  • 5 authors
·
Jul 15, 2025

PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks

Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.

  • 11 authors
·
May 19, 2025

ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search

Recent methodologies in LLM self-training mostly rely on LLM generating responses and filtering those with correct output answers as training data. This approach often yields a low-quality fine-tuning training set (e.g., incorrect plans or intermediate reasoning). In this paper, we develop a reinforced self-training approach, called ReST-MCTS*, based on integrating process reward guidance with tree search MCTS* for collecting higher-quality reasoning traces as well as per-step value to train policy and reward models. ReST-MCTS* circumvents the per-step manual annotation typically used to train process rewards by tree-search-based reinforcement learning: Given oracle final correct answers, ReST-MCTS* is able to infer the correct process rewards by estimating the probability this step can help lead to the correct answer. These inferred rewards serve dual purposes: they act as value targets for further refining the process reward model and also facilitate the selection of high-quality traces for policy model self-training. We first show that the tree-search policy in ReST-MCTS* achieves higher accuracy compared with prior LLM reasoning baselines such as Best-of-N and Tree-of-Thought, within the same search budget. We then show that by using traces searched by this tree-search policy as training data, we can continuously enhance the three language models for multiple iterations, and outperform other self-training algorithms such as ReST^EM and Self-Rewarding LM.

  • 5 authors
·
Jun 6, 2024

RMCBench: Benchmarking Large Language Models' Resistance to Malicious Code

The emergence of Large Language Models (LLMs) has significantly influenced various aspects of software development activities. Despite their benefits, LLMs also pose notable risks, including the potential to generate harmful content and being abused by malicious developers to create malicious code. Several previous studies have focused on the ability of LLMs to resist the generation of harmful content that violates human ethical standards, such as biased or offensive content. However, there is no research evaluating the ability of LLMs to resist malicious code generation. To fill this gap, we propose RMCBench, the first benchmark comprising 473 prompts designed to assess the ability of LLMs to resist malicious code generation. This benchmark employs two scenarios: a text-to-code scenario, where LLMs are prompted with descriptions to generate code, and a code-to-code scenario, where LLMs translate or complete existing malicious code. Based on RMCBench, we conduct an empirical study on 11 representative LLMs to assess their ability to resist malicious code generation. Our findings indicate that current LLMs have a limited ability to resist malicious code generation with an average refusal rate of 40.36% in text-to-code scenario and 11.52% in code-to-code scenario. The average refusal rate of all LLMs in RMCBench is only 28.71%; ChatGPT-4 has a refusal rate of only 35.73%. We also analyze the factors that affect LLMs' ability to resist malicious code generation and provide implications for developers to enhance model robustness.

  • 9 authors
·
Sep 23, 2024

Tell me about yourself: LLMs are aware of their learned behaviors

We study behavioral self-awareness -- an LLM's ability to articulate its behaviors without requiring in-context examples. We finetune LLMs on datasets that exhibit particular behaviors, such as (a) making high-risk economic decisions, and (b) outputting insecure code. Despite the datasets containing no explicit descriptions of the associated behavior, the finetuned LLMs can explicitly describe it. For example, a model trained to output insecure code says, ``The code I write is insecure.'' Indeed, models show behavioral self-awareness for a range of behaviors and for diverse evaluations. Note that while we finetune models to exhibit behaviors like writing insecure code, we do not finetune them to articulate their own behaviors -- models do this without any special training or examples. Behavioral self-awareness is relevant for AI safety, as models could use it to proactively disclose problematic behaviors. In particular, we study backdoor policies, where models exhibit unexpected behaviors only under certain trigger conditions. We find that models can sometimes identify whether or not they have a backdoor, even without its trigger being present. However, models are not able to directly output their trigger by default. Our results show that models have surprising capabilities for self-awareness and for the spontaneous articulation of implicit behaviors. Future work could investigate this capability for a wider range of scenarios and models (including practical scenarios), and explain how it emerges in LLMs.

  • 6 authors
·
Jan 19, 2025

S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models

Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of a LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200, 000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.

  • 10 authors
·
May 23, 2024

KnowRL: Teaching Language Models to Know What They Know

Truly reliable AI requires more than simply scaling up knowledge; it demands the ability to know what it knows and when it does not. Yet recent research shows that even the best LLMs misjudge their own competence in more than one in five cases, making any response born of such internal uncertainty impossible to fully trust. Inspired by self-improvement reinforcement learning techniques that require minimal data, we present a simple but powerful framework KnowRL that strengthens a model's internal understanding of its own feasibility boundaries, enabling safer and more responsible behaviour. Our framework combines two components: (i) introspection, where the model generates and classifies tasks it judges feasible or infeasible, and (ii) consensus-based rewarding, where stability of self-knowledge assessment is reinforced through internal agreement. By using internally generated data, this design strengthens consistency in self-knowledge and entirely avoids costly external supervision. In experiments on LLaMA-3.1-8B and Qwen-2.5-7B, KnowRL steadily improved self-knowledge, validated by both intrinsic self-consistency and extrinsic benchmarking. With nothing more than a small seed set and no external supervision, our method drove gains as high as 28% in accuracy and 12% in F1, outperforming baselines in just a few iterations. Our framework essentially unlocks the untapped capacity of LLMs to self-improve their knowledge awareness, opening the door to reliable, more accountable AI and safer deployment in critical applications. Owing to its simplicity and independence from external effort, we encourage applying this reliability-enhancing process to all future models.

  • 2 authors
·
Oct 13, 2025

Democratizing Reasoning Ability: Tailored Learning from Large Language Model

Large language models (LLMs) exhibit impressive emergent abilities in natural language processing, but their democratization is hindered due to huge computation requirements and closed-source nature. Recent research on advancing open-source smaller LMs by distilling knowledge from black-box LLMs has obtained promising results in the instruction-following ability. However, the reasoning ability which is more challenging to foster, is relatively rarely explored. In this paper, we propose a tailored learning approach to distill such reasoning ability to smaller LMs to facilitate the democratization of the exclusive reasoning ability. In contrast to merely employing LLM as a data annotator, we exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm. This paradigm enables the student to expose its deficiencies to the black-box teacher who then can provide customized training data in return. Further, to exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes. The learning from self-reflection and LLM are all tailored to the student's learning status, thanks to the seamless integration with the multi-round learning paradigm. Comprehensive experiments and analysis on mathematical and commonsense reasoning tasks demonstrate the effectiveness of our method. The code will be available at https://github.com/Raibows/Learn-to-Reason.

  • 11 authors
·
Oct 20, 2023 1

From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future

With the rise of large language models (LLMs), researchers are increasingly exploring their applications in var ious vertical domains, such as software engineering. LLMs have achieved remarkable success in areas including code generation and vulnerability detection. However, they also exhibit numerous limitations and shortcomings. LLM-based agents, a novel tech nology with the potential for Artificial General Intelligence (AGI), combine LLMs as the core for decision-making and action-taking, addressing some of the inherent limitations of LLMs such as lack of autonomy and self-improvement. Despite numerous studies and surveys exploring the possibility of using LLMs in software engineering, it lacks a clear distinction between LLMs and LLM based agents. It is still in its early stage for a unified standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain. In this survey, we broadly investigate the current practice and solutions for LLMs and LLM-based agents for software engineering. In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance. We review and differentiate the work of LLMs and LLM-based agents from these six topics, examining their differences and similarities in tasks, benchmarks, and evaluation metrics. Finally, we discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering. We anticipate this work will shed some lights on pushing the boundaries of LLM-based agents in software engineering for future research.

  • 6 authors
·
Aug 5, 2024

Introspective Growth: Automatically Advancing LLM Expertise in Technology Judgment

Large language models (LLMs) increasingly demonstrate signs of conceptual understanding, yet much of their internal knowledge remains latent, loosely structured, and difficult to access or evaluate. We propose self-questioning as a lightweight and scalable strategy to improve LLMs' understanding, particularly in domains where success depends on fine-grained semantic distinctions. To evaluate this approach, we introduce a challenging new benchmark of 1.3 million post-2015 computer science patent pairs, characterized by dense technical jargon and strategically complex writing. The benchmark centers on a pairwise differentiation task: can a model distinguish between closely related but substantively different inventions? We show that prompting LLMs to generate and answer their own questions - targeting the background knowledge required for the task - significantly improves performance. These self-generated questions and answers activate otherwise underutilized internal knowledge. Allowing LLMs to retrieve answers from external scientific texts further enhances performance, suggesting that model knowledge is compressed and lacks the full richness of the training data. We also find that chain-of-thought prompting and self-questioning converge, though self-questioning remains more effective for improving understanding of technical concepts. Notably, we uncover an asymmetry in prompting: smaller models often generate more fundamental, more open-ended, better-aligned questions for mid-sized models than large models with better understanding do, revealing a new strategy for cross-model collaboration. Altogether, our findings establish self-questioning as both a practical mechanism for automatically improving LLM comprehension, especially in domains with sparse and underrepresented knowledge, and a diagnostic probe of how internal and external knowledge are organized.

  • 4 authors
·
May 18, 2025

Machine Learners Should Acknowledge the Legal Implications of Large Language Models as Personal Data

Does GPT know you? The answer depends on your level of public recognition; however, if your information was available on a website, the answer is probably yes. All Large Language Models (LLMs) memorize training data to some extent. If an LLM training corpus includes personal data, it also memorizes personal data. Developing an LLM typically involves processing personal data, which falls directly within the scope of data protection laws. If a person is identified or identifiable, the implications are far-reaching: the AI system is subject to EU General Data Protection Regulation requirements even after the training phase is concluded. To back our arguments: (1.) We reiterate that LLMs output training data at inference time, be it verbatim or in generalized form. (2.) We show that some LLMs can thus be considered personal data on their own. This triggers a cascade of data protection implications such as data subject rights, including rights to access, rectification, or erasure. These rights extend to the information embedded with-in the AI model. (3.) This paper argues that machine learning researchers must acknowledge the legal implications of LLMs as personal data throughout the full ML development lifecycle, from data collection and curation to model provision on, e.g., GitHub or Hugging Face. (4.) We propose different ways for the ML research community to deal with these legal implications. Our paper serves as a starting point for improving the alignment between data protection law and the technical capabilities of LLMs. Our findings underscore the need for more interaction between the legal domain and the ML community.

  • 3 authors
·
Mar 3, 2025

TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation

Given the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% to 52.2%) in the frequency of exact agreements between LLM judgements and human preferences, as compared to having an LLM directly score an output. We then show that STICK (Self-TICK) can be used to improve generation quality across multiple benchmarks via self-refinement and Best-of-N selection. STICK self-refinement on LiveBench reasoning tasks leads to an absolute gain of +7.8%, whilst Best-of-N selection with STICK attains +6.3% absolute improvement on the real-world instruction dataset, WildBench. In light of this, structured, multi-faceted self-improvement is shown to be a promising way to further advance LLM capabilities. Finally, by providing LLM-generated checklists to human evaluators tasked with directly scoring LLM responses to WildBench instructions, we notably increase inter-annotator agreement (0.194 to 0.256).

  • 5 authors
·
Oct 4, 2024

Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors

Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.

  • 6 authors
·
Jun 12, 2025

Statistical Estimation of Adversarial Risk in Large Language Models under Best-of-N Sampling

Large Language Models (LLMs) are typically evaluated for safety under single-shot or low-budget adversarial prompting, which underestimates real-world risk. In practice, attackers can exploit large-scale parallel sampling to repeatedly probe a model until a harmful response is produced. While recent work shows that attack success increases with repeated sampling, principled methods for predicting large-scale adversarial risk remain limited. We propose a scaling-aware Best-of-N estimation of risk, SABER, for modeling jailbreak vulnerability under Best-of-N sampling. We model sample-level success probabilities using a Beta distribution, the conjugate prior of the Bernoulli distribution, and derive an analytic scaling law that enables reliable extrapolation of large-N attack success rates from small-budget measurements. Using only n=100 samples, our anchored estimator predicts ASR@1000 with a mean absolute error of 1.66, compared to 12.04 for the baseline, which is an 86.2% reduction in estimation error. Our results reveal heterogeneous risk scaling profiles and show that models appearing robust under standard evaluation can experience rapid nonlinear risk amplification under parallel adversarial pressure. This work provides a low-cost, scalable methodology for realistic LLM safety assessment. We will release our code and evaluation scripts upon publication to future research.

microsoft Microsoft
·
Jan 30 3

Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach

StarCraft II is a challenging benchmark for AI agents due to the necessity of both precise micro level operations and strategic macro awareness. Previous works, such as Alphastar and SCC, achieve impressive performance on tackling StarCraft II , however, still exhibit deficiencies in long term strategic planning and strategy interpretability. Emerging large language model (LLM) agents, such as Voyage and MetaGPT, presents the immense potential in solving intricate tasks. Motivated by this, we aim to validate the capabilities of LLMs on StarCraft II, a highly complex RTS game.To conveniently take full advantage of LLMs` reasoning abilities, we first develop textual StratCraft II environment, called TextStarCraft II, which LLM agent can interact. Secondly, we propose a Chain of Summarization method, including single frame summarization for processing raw observations and multi frame summarization for analyzing game information, providing command recommendations, and generating strategic decisions. Our experiment consists of two parts: first, an evaluation by human experts, which includes assessing the LLMs`s mastery of StarCraft II knowledge and the performance of LLM agents in the game; second, the in game performance of LLM agents, encompassing aspects like win rate and the impact of Chain of Summarization.Experiment results demonstrate that: 1. LLMs possess the relevant knowledge and complex planning abilities needed to address StarCraft II scenarios; 2. Human experts consider the performance of LLM agents to be close to that of an average player who has played StarCraft II for eight years; 3. LLM agents are capable of defeating the built in AI at the Harder(Lv5) difficulty level. We have open sourced the code and released demo videos of LLM agent playing StarCraft II.

  • 7 authors
·
Dec 19, 2023

Current state of LLM Risks and AI Guardrails

Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount. However, LLMs have inherent risks accompanying them, including bias, potential for unsafe actions, dataset poisoning, lack of explainability, hallucinations, and non-reproducibility. These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm. This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques. We examine intrinsic and extrinsic bias evaluation methods and discuss the importance of fairness metrics for responsible AI development. The safety and reliability of agentic LLMs (those capable of real-world actions) are explored, emphasizing the need for testability, fail-safes, and situational awareness. Technical strategies for securing LLMs are presented, including a layered protection model operating at external, secondary, and internal levels. System prompts, Retrieval-Augmented Generation (RAG) architectures, and techniques to minimize bias and protect privacy are highlighted. Effective guardrail design requires a deep understanding of the LLM's intended use case, relevant regulations, and ethical considerations. Striking a balance between competing requirements, such as accuracy and privacy, remains an ongoing challenge. This work underscores the importance of continuous research and development to ensure the safe and responsible use of LLMs in real-world applications.

  • 2 authors
·
Jun 16, 2024

S^3c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners

Self-correction is a novel method that can stimulate the potential reasoning abilities of large language models (LLMs). It involves detecting and correcting errors during the inference process when LLMs solve reasoning problems. However, recent works do not regard self-correction as a spontaneous and intrinsic capability of LLMs. Instead, such correction is achieved through post-hoc generation, external knowledge introduction, multi-model collaboration, and similar techniques. In this paper, we propose a series of mathematical LLMs called S^3c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning. This capability helps LLMs to recognize whether their ongoing inference tends to contain errors and simultaneously correct these errors to produce a more reliable response. We proposed a method, which employs a step-level sampling approach to construct step-wise self-correction data for achieving such ability. Additionally, we implement a training strategy that uses above constructed data to equip LLMs with spontaneous step-level self-correction capacities. Our data and methods have been demonstrated to be effective across various foundation LLMs, consistently showing significant progress in evaluations on GSM8K, MATH, and other mathematical benchmarks. To the best of our knowledge, we are the first to introduce the spontaneous step-level self-correction ability of LLMs in mathematical reasoning.

  • 8 authors
·
Sep 2, 2024