new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

The Tool Decathlon: Benchmarking Language Agents for Diverse, Realistic, and Long-Horizon Task Execution

Real-world language agents must handle complex, multi-step workflows across diverse Apps. For instance, an agent may manage emails by coordinating with calendars and file systems, or monitor a production database to detect anomalies and generate reports following an operating manual. However, existing language agent benchmarks often focus on narrow domains or simplified tasks that lack the diversity, realism, and long-horizon complexity required to evaluate agents' real-world performance. To address this gap, we introduce the Tool Decathlon (dubbed as Toolathlon), a benchmark for language agents offering diverse Apps and tools, realistic environment setup, and reliable execution-based evaluation. Toolathlon spans 32 software applications and 604 tools, ranging from everyday platforms such as Google Calendar and Notion to professional ones like WooCommerce, Kubernetes, and BigQuery. Most of the tools are based on a high-quality set of Model Context Protocol (MCP) servers that we may have revised or implemented ourselves. Unlike prior works, which primarily ensure functional realism but offer limited environment state diversity, we provide realistic initial environment states from real software, such as Canvas courses with dozens of students or real financial spreadsheets. This benchmark includes 108 manually sourced or crafted tasks in total, requiring interacting with multiple Apps over around 20 turns on average to complete. Each task is strictly verifiable through dedicated evaluation scripts. Comprehensive evaluation of SOTA models highlights their significant shortcomings: the best-performing model, Claude-4.5-Sonnet, achieves only a 38.6% success rate with 20.2 tool calling turns on average, while the top open-weights model DeepSeek-V3.2-Exp reaches 20.1%. We expect Toolathlon to drive the development of more capable language agents for real-world, long-horizon task execution.

  • 21 authors
·
Oct 29, 2025 1

Agent-Diff: Benchmarking LLM Agents on Enterprise API Tasks via Code Execution with State-Diff-Based Evaluation

We present Agent-Diff, a novel benchmarking framework for evaluating agentic Large Language Models (LLMs) on real-world tasks that execute code via external APIs. Agentic LLM performance varies due to differences in models, external tool access, prompt structures, and agentic frameworks. Benchmarks must make fundamental trade-offs between a sandboxed approach that controls for variation in software environments and more ecologically valid approaches employing real services. Agent-Diff attempts to capture the desirable features of both of these approaches by including access to the real API interfaces for software services while sandboxing the environment in which calls are made, processed, and evaluated. This approach relies on two key innovations. The first is a novel state-diff contract, which separates process from outcome - rather than fuzzy trace or parameter matching, we define task success as whether the expected change in environment state was achieved. The second is a novel sandbox that provides a standardized scripting layer that all models use to execute code against external APIs (Slack, Box, Linear, Google Calendar). Thus, we can evaluate different agentic LLMs against a standardized set of contracts using a unified sandbox while still evaluating their performance on real-world service interfaces. Using the Agent-Diff framework, we provide benchmarks for nine LLMs across 224 tasks utilizing enterprise software workflows. In addition, we evaluate the robustness of the framework with ablation experiments to assess the contribution of access to API documentation on benchmark performance. Code and data: https://github.com/agent-diff-bench/agent-diff.

  • 3 authors
·
Feb 11