- DeepReview: Improving LLM-based Paper Review with Human-like Deep Thinking Process Large Language Models (LLMs) are increasingly utilized in scientific research assessment, particularly in automated paper review. However, existing LLM-based review systems face significant challenges, including limited domain expertise, hallucinated reasoning, and a lack of structured evaluation. To address these limitations, we introduce DeepReview, a multi-stage framework designed to emulate expert reviewers by incorporating structured analysis, literature retrieval, and evidence-based argumentation. Using DeepReview-13K, a curated dataset with structured annotations, we train DeepReviewer-14B, which outperforms CycleReviewer-70B with fewer tokens. In its best mode, DeepReviewer-14B achieves win rates of 88.21\% and 80.20\% against GPT-o1 and DeepSeek-R1 in evaluations. Our work sets a new benchmark for LLM-based paper review, with all resources publicly available. The code, model, dataset and demo have be released in http://ai-researcher.net. 4 authors · Mar 11, 2025
1 ScholarPeer: A Context-Aware Multi-Agent Framework for Automated Peer Review Automated peer review has evolved from simple text classification to structured feedback generation. However, current state-of-the-art systems still struggle with "surface-level" critiques: they excel at summarizing content but often fail to accurately assess novelty and significance or identify deep methodological flaws because they evaluate papers in a vacuum, lacking the external context a human expert possesses. In this paper, we introduce ScholarPeer, a search-enabled multi-agent framework designed to emulate the cognitive processes of a senior researcher. ScholarPeer employs a dual-stream process of context acquisition and active verification. It dynamically constructs a domain narrative using a historian agent, identifies missing comparisons via a baseline scout, and verifies claims through a multi-aspect Q&A engine, grounding the critique in live web-scale literature. We evaluate ScholarPeer on DeepReview-13K and the results demonstrate that ScholarPeer achieves significant win-rates against state-of-the-art approaches in side-by-side evaluations and reduces the gap to human-level diversity. 6 authors · Jan 30