--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: structured_conservation_gc_function_bert results: [] --- # structured_conservation_gc_function_bert This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6350 - Accuracy: 0.7044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: polynomial - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 383 | 0.6999 | 0.5888 | | 0.6192 | 2.0 | 766 | 0.6385 | 0.6983 | | 0.5689 | 3.0 | 1149 | 0.6443 | 0.6825 | | 0.5426 | 4.0 | 1532 | 0.6373 | 0.6898 | | 0.5426 | 5.0 | 1915 | 0.6257 | 0.7080 | | 0.5315 | 6.0 | 2298 | 0.6350 | 0.7044 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0